Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Text & Talk

An Interdisciplinary Journal of Language, Discourse & Communication Studies

Ed. by Sarangi, Srikant


IMPACT FACTOR 2018: 0.400
5-year IMPACT FACTOR: 0.750

CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.305
Source Normalized Impact per Paper (SNIP) 2018: 0.670

Online
ISSN
1860-7349
See all formats and pricing
More options …
Volume 36, Issue 3

Issues

Introducing Connected Concept Analysis: A network approach to big text datasets

Simon Lindgren
Published Online: 2016-04-30 | DOI: https://doi.org/10.1515/text-2016-0016

Abstract

This paper introduces Connected Concept Analysis (CCA) as a framework for text analysis which ties qualitative and quantitative considerations together in one unified model. Even though CCA can be used to map and analyze any full text dataset, of any size, the method was created specifically for taking the sensibilities of qualitative discourse analysis into the age of the Internet and big data. Using open data from a large online survey on habits and views relating to intellectual property rights, piracy and file sharing, I introduce CCA as a mixed-method approach aiming to bring out knowledge about corpuses of text, the sizes of which make it unfeasible to make comprehensive close readings. CCA aims to do this without reducing the text to numbers, as often becomes the case in content analysis. Instead of simply counting words or phrases, I draw on constant comparative coding for building concepts and on network analysis for connecting them. The result – a network graph visualization of key connected concepts in the analyzed text dataset – meets the need for text visualization systems that can support discourse analysis.

Keywords: network analysis; content analysis; discourse analysis; visualization; research methods

References

  • Almutairi, B. A. A. 2013. Visualizing patterns of appraisal in texts and corpora. Text & Talk 33(4–5). 691–723.Google Scholar

  • Bakker, R. R. 1987. Knowledge graphs: Representation and structuring of scientific knowledge. Dissertation. University Twente.

  • Barthes, R. 1970. Mythologies. Paris: Seuil.Google Scholar

  • Bastian, M., S. Heymann & M. Jacomy. 2009. Gephi: An open source software for exploring and manipulating networks. ICWSM 8. 361–362.Google Scholar

  • Berelson, Bernard. 1952. Content analysis in communication research. New York: Hafner.Google Scholar

  • Blumer, H. 1954. What is wrong with social theory? American Sociological Review 19(1). 3–10.Google Scholar

  • Bourdieu, P. 1977. The economics of linguistic exchanges. Social Science Information 16(6). 645–668.Google Scholar

  • Boyd, D. & K. Crawford. 2012. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society 15(5). 662–679.Google Scholar

  • Brady, Henry E. & David Collier. 2004. Rethinking social inquiry: Diverse tools, shared standards. Lanham, MD: Rowman & Littlefield.Google Scholar

  • Bruns, A., J. Burgess, T. Highfield, L. Kirchhoff & T. Nicolai. 2010. Mapping the Australian networked public sphere. Social Science Computer Review 29(3). 277–287Google Scholar

  • Callon, M., J. P. Courtial, W. A. Turner & S. Bauin. 1983. From translations to problematic networks: An introduction to co-word analysis. Social Science Information 22(2). 191–235.Google Scholar

  • Carley, K. 1988. Formalizing the social expert’s knowledge. Sociological Methods & Research 17(2). 165–232.Google Scholar

  • Carley, K. 1993. Coding choices for textual analysis: A comparison of content analysis and map analysis. Sociological Methodology 23(1). 75–126.Google Scholar

  • Carley, K. M. & M. Palmquist. 1992. Extracting, representing, and analyzing mental models. Social Forces 70(3). 601–636.Google Scholar

  • Castells, Manuel. 2009. Communication power. Oxford: Oxford University Press.Google Scholar

  • Corman, S. R., T. Kuhn, R. D. Mcphee & K. J. Dooley. 2002. Studying complex discursive systems: Centering resonance analysis of communication. Human Communication 28(20). 157–206.Google Scholar

  • Danowski, J. 1982. A network-based content analysis methodology for computer- mediated communication: An illustration with a computer bulletin board. In R. Bostrom (ed.), Communication yearbook, vol. 6, 904–925. New Brunswick, NJ: Transaction Books.Google Scholar

  • De Nooy, W., A. Mrvar & V. Batagelj. 2011. Exploratory social network analysis with Pajek. New York: Cambridge University Press.Google Scholar

  • Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer & R. Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6). 391.Google Scholar

  • Denzin, Norman K. & Yvonna S. Lincoln 2003. Collecting and interpreting qualitative materials. Thousand Oaks: SAGE.Google Scholar

  • Dickinson, Markus, Chris Brew & Detmar Meurers. 2013. Language and computers. Chichester: Wiley-Blackwell.Google Scholar

  • Diesner, J. & K. M. Carley. 2005. Revealing social structure from texts: Meta-matrix text analysis as a novel method for network text analysis. In V. K. Narayanan & D. J. Armstrong (eds.), Causal mapping for information systems and technology research: Approaches, advances, and illustrations, 81–108. Harrisburg, PA: Idea Group Publishing.Google Scholar

  • Eisenberg, E. & P. Monge. 1987. Emergent networks. In F. M. Jablin. (ed.), Handbook of organizational communication: An interdisciplinary perspective, 303–351. London: Sage.Google Scholar

  • Ellson, J., E. Gansner, L. Koutsofios, S. C. North & G. Woodhull. 2001. Graphviz–open source graph drawing tools. In P. Mutzel, M. Jünger & S. Leipert (eds.), Graph drawing, 483–484. Berlin & Heidelberg: Springer.Google Scholar

  • Feilzer, M. Y. 2010. Doing mixed methods research pragmatically: Implications for the rediscovery of pragmatism as a research paradigm. Journal of Mixed Methods Research 4(1). 6–16.Google Scholar

  • Flick, U. 1992. Triangulation revisited: Strategy of validation or alternative? Journal for the Theory of Social Behaviour 22(2). 175–197.Google Scholar

  • Foucault, M. 1972. The archaeology of knowledge. New York: Pantheon Books.Google Scholar

  • Glaser, B. G. 1965. The constant comparative method of qualitative analysis. Social Problems 12(4). 436–445.Google Scholar

  • Glaser, Barney G. & Anselm L. Strauss. 1967. The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine.Google Scholar

  • Golder, S. A. & M. W. Macy. 2011. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051). 1878–1881.Google Scholar

  • Harris, Z. S. 1952. Discourse analysis. Language 28(1). 1–30.Google Scholar

  • Hartley, R. T. & J. A. Barnden. 1997. Semantic networks: Visualizations of knowledge. Trends in Cognitive Sciences 1(5). 169–175.Google Scholar

  • Herrmann, A. & L. Cronqvist. 2006. Contradictions in qualitative comparative analysis (QCA): Ways out of the dilemma. Florence: European University Institute.Google Scholar

  • James, P. 1992. Knowledge graphs. In R. P. van der Riet & R. A. Meersman (eds.), Linguistic instruments in knowledge engineering, 97–117. Amsterdam: Elsevier.Google Scholar

  • Jenkins, Henry, Sam Ford & Joshua Green. 2013. Spreadable media: Creating value and meaning in a networked culture. New York: New York University Press.Google Scholar

  • Jensen, Klaus Bruhn. 2002. The complementarity of qualitative and quantitative methodologies in media and communication research. In K. B. Jensen (ed.), A handbook of media and communication research: Qualitative and quantitative methodologies. London: Routledge.Google Scholar

  • Jick, T. D. 1979. Mixing qualitative and quantitative methods: Triangulation in action. Administrative Science Quarterly 24. 602–611.Google Scholar

  • Khonsari, K. K., Z. A. Nayeri, A. Fathalian, & L. Fathalian. 2010. Social network analysis of Iran’s green movement opposition groups using Twitter.

  • Kim, Leo. 2013. Denotation and connotation in public representation: Semantic network analysis of Hwang supporters’ internet dialogues. Public Understanding of Science 22(3). 335–350.Google Scholar

  • Kincheloe, Joe L. 2005. On to the next level: Continuing the conceptualization of the bricolage. Qualitative Inquiry 11(3). 323–350.Google Scholar

  • Krippendorff, Klaus. 2004. Content analysis: An introduction to its methodology. Thousand Oaks, CA: Sage.Google Scholar

  • Lacan, J. (2006). Écrits: The first complete edition in English. Edited by B. Fink. New York: W.W. Norton & Co.Google Scholar

  • Laclau, Ernesto. 1996. On the death and rebirth of ideology. Journal of Political Ideologies 3(1). 201–220.Google Scholar

  • Laclau, Ernesto & Chantal Mouffe. 1985. Hegemony and socialist strategy. London: Verso.Google Scholar

  • Lentricchia, Frank & Andrew DuBois. 2003. Close reading: The reader. Durham, NC: Duke University Press.Google Scholar

  • Lindgren, Simon & Fredrik Palm. 2011. Textometrica: Service Package for Text Analysis. Umeå University: HUMlab.

  • Manyika, James, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh & Angela H. Byers. 2011. Big data: The next frontier for innovation, competition, and productivity.

  • McNaught, Carmel & Paul Lam. 2010. Using Wordle as a supplementary research tool. The Qualitative Report 15(3). 630–643.Google Scholar

  • Meyrowitz, Joshua. 1985. No sense of place: The impact of electronic media on social behavior. New York: Oxford University Press.Google Scholar

  • Moretti, F. 2005. Graphs, maps, trees: Abstract models for a literary history. New York: Verso Books.Google Scholar

  • Moretti, Franco (2013). Distant reading. London: VersoGoogle Scholar

  • Moser, Christine, Peter Groenewegen & Marleen Huysman. 2013. Extending social network analysis with discourse analysis: Combining relational with interpretive data. In Tansel Özyer, Jon Rokne, Gerhard Wagner, Arno H.P. Reuser (eds.), The influence of technology on social network analysis and mining, 547–561. Vienna: Springer.Google Scholar

  • Neuendorf, Kimberly A. 2002. The content analysis guidebook. London: Sage.Google Scholar

  • Park, Han Woo, & Loet Leydesdorff. 2013. Decomposing social and semantic networks in emerging “big data” research. Journal of Informetrics 7(3). 756–765.Google Scholar

  • Popping, R. 2003. Knowledge graphs and network text analysis. Social Science Information 42(1). 91–106.Google Scholar

  • Ragin, Charles C. 2000. Fuzzy-set social science. Chicago: University of Chicago Press.Google Scholar

  • Rice, Ronald E. & James A. Danowski. 1993. Is it really just like a fancy answering machine? Comparing semantic networks of different types of voice mail users. Journal of Business Communication 30(4). 369–397.Google Scholar

  • Rorty, Richard. 1999. Philosophy and social hope. London: Penguin.Google Scholar

  • Sedereviciute, K. & C. Valentini. 2011. Towards a more holistic stakeholder analysis approach. Mapping known and undiscovered stakeholders from social media. International Journal of Strategic Communication, 5, 221–239.Google Scholar

  • Svensson, Måns, Stefan Larsson & Marcin de Kaminski. 2013. The research bay–studying the global file sharing community. IP in Context: Law and Society Perspectives on Intellectual Property.

  • Turkle, Sherry. 1997. Life on the screen: Identity in the age of the Internet (New ed.). London: Phoenix.Google Scholar

  • Van Atteveldt, Wouter. 2008. Semantic network analysis: Techniques for extracting, representing, and querying media content. Amsterdam: Vrije Universiteit. Available from unAPI.Google Scholar

  • Van Looy, Jan & Jan. Baetens. 2003. Close reading new media: Analyzing electronic literature. Leuven: Leuven University Press.Google Scholar

  • Varnelis, Kazys. 2008. Networked publics. Cambridge, Mass.: MIT Press.Google Scholar

  • Vergeer, M., L. Hermans & S. Sams. 2011. Is the voter only a tweet away? Micro blogging during the 2009 European Parliament election campaign in the Netherlands. First Monday, 16.

  • Wasserman, Stanley, & Katherine Faust. 1994. Social network analysis: Methods and applications. Cambridge: Cambridge University Press.Google Scholar

  • Weinstein, Deena, & Michael A. Weinstein. 1991. Georg Simmel: Sociological flaneur bricoleur. Theory, Culture & Society 8(3). 151–168.Google Scholar

  • Wilbur, W. J. & K. Sirotkin. 1992. The automatic identification of stop words. Journal of Information Science, 18, 45–55.Google Scholar

  • Woelfel, Joseph, & Edward L. Fink. 1980. The measurement of communication processes: Galileo theory and method. New York: Academic Press.Google Scholar

  • Wu, Yingcai, Thomas Provan, Furu Wei, Shixia Liu & Kwan‐Liu Ma. 2011. Semantic‐preserving word clouds by seam carving. Paper presented at the Computer Graphics Forum.

  • Yardley, Ainslie. 2008. Piecing Together – A Methodological Bricolage. Paper presented at the Forum Qualitative Sozialforschung/Forum: Qualitative Social Research.

About the article

Simon Lindgren

Simon Lindgren is Professor of Sociology and Director of the Digital Social Research Unit (DIGSUM) at Umeå University, Sweden. His research is about social interaction, participation, power and self-organization in networked online media. He also works with developing methodological tools and strategies for analyzing discursive and social network aspects of the evolving digital media landscape. He is the author of New Noise: A Cultural Sociology of Digital Disruption (2013) and the editor of Hybrid Media Culture: Sensing Place in a World of Flows (2013).


Published Online: 2016-04-30

Published in Print: 2016-05-01


Citation Information: Text & Talk, Volume 36, Issue 3, Pages 341–362, ISSN (Online) 1860-7349, ISSN (Print) 1860-7330, DOI: https://doi.org/10.1515/text-2016-0016.

Export Citation

©2016 by De Gruyter Mouton.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Robert G. Boutilier and Michal Zdziarski
Construction Management and Economics, 2017, Volume 35, Number 8-9, Page 498

Comments (0)

Please log in or register to comment.
Log in