Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 41, Issue 6

Issues

Molecular modulations and influence of acclimation of Ni on acute Ni toxicity in Plectonema boryanum

Ni moleküler modülasyonunun ve etkisinin Ni ile şartlandırılmış Plectonema boryanum üzerindeki akut Ni toksisitesi

Alvina Farooqui
  • Corresponding author
  • Department of Bioengineering Integral University Kursi Road, Dasauli, P.O. Bas-ha Lucknow 226026, Uttar Pradesh, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sadaf Mahfooz / Adeeba Shamim / Haris Mohd. Siddiqui / Kavindra Kumar Kesari
  • Jaipur National University Ringgold standard institution, Department of Engineering and Technology, School of Life Science, Jaipur, Rajasthan, India
  • University of Eastern, Department of Environmental Science, Kuopio, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-14 | DOI: https://doi.org/10.1515/tjb-2016-0131

Abstract

Objective:

In this study, metal induced accumulation of antioxidants, proline and phenol were proposed during acclimation, to provide defense, protection and resistance against oxidative stress on Ni acclimated cyanobacterium.

Methods:

Plectonema boryanum was used as a test organism in the present study and the experiments were performed in two sets (1) cells differentially exposed to Ni (2) cells acclimated with Ni and then further exposed to Ni in the plant tissue culture laboratory.

Results:

Dose-dependent formation of peroxide in Ni-treated cells increased the activity of superoxide dismutase (SOD) and also enhanced accumulations of non-enzymatic antioxidants such as proline and total phenols at low concentrations of Ni. Down regulation of most of the polypeptides at 20 μM of Ni demonstrated the severe toxicity of the metal while a slight up-regulation of peptide depicted its role in metal tolerance. Ni acclimated cells also showed reduction in peroxide and an increase in proline and total phenol after exposure to 4 μM of Ni.

Conclusion:

Our results for the first time demonstrated that accumulation of phenol and proline during the acclimation process could provide tolerance to the cyanobacterium from deleterious effects of the metal stress if it is further exposed to the same metal.

Özet

Amaç:

Bu çalışmada, antioksidanlar, prolin ve fenol’ün metal bağlı birikimini Ni ile şartlandırılmış siyanobakterinin oksidatif strese karşı savunma, koruma ve direnç sağlamak gibi özellikler gösterdiği belirlenmiştir.

Metot:

Bu çalışmada Plectonema boryanum test organizması olarak kullanılmıştır ve deneyler iki set olarak; diferansiyel olarak hücrelerin nikele maruz bırakılması ve hücrelerin nikel ile şartlandırılması şeklinde gerçekleştirilmiştir, sonrasında daha fazla nikele maruz kalma işlemi bitki doku kültürü laboratuvarında gerçekleştirilmiştir.

Bulgular:

Doz bağımlı peroksit oluşumu nikel ile muamele edilmiş hücrelerde süperoksit dismutaz (SOD) aktivitesini artırmış, aynı zamanda non-enzimatik antioksidanlar proline ve total fenollerin birikimini de düşük konsantrasyondaki Ni miktarlarında artırmıştır. Peptidin metal toleransı ile regülsyonu artırıcı etkisi düşünüldüğünde, çoğu polipeptid üretimi 20 μM Ni konsantrasyonunda ciddi toksisite göstermesiyle baskılanmıştır. 4 μM Nikel’e maruz bırakılmış, Ni ile şartlandırılmış hücrelerde peroksit miktarında azalma, prolin ve total fenol miktarında artış görülmüştür.

Sonuç:

Sonuçlarımıza göre fenol ve prolinin birikiminin şartlandırma işlemiyle siyanobakterlerin aynı metale maruz kaldığında üzerlerindeki metal stresini azalttığı ilk defa gösterilmiştir.

Keywords: Antioxidants; Nickel; Cyanobacteria; Phenolic Compounds; Proline

Anahtar Kelimeler:: Antioksidanlar; Nikel; Siyanobakter; Fenolik bileşenler; Prolin

References

  • [1]

    Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 2007;66:204–9.Google Scholar

  • [2]

    Rajaganapathy V, Xavier F, Sreekumar D, Mandal PK. Heavy metal contamination in soil, water and fodder and their presence in livestock and products: a review. J Environ Sci Technol 2011;4:234–49.Google Scholar

  • [3]

    Dar SH, Kumawat DM, Singh N, Wani KA. Sewage treatment potential of water hyacinth (Eichhorniacrassipes). Res J Environ Sci 2011;5:377–85.Google Scholar

  • [4]

    Chakraborty P, Raghunadh Babu PV, Acharyya T, Bandyopadhyay D. Stress and toxicity of bio-logically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC. Chemosphere 2010;80:548–53.Google Scholar

  • [5]

    Dudkowiak A, Olejarz B, Łukasiewicz J, Banaszek J. Heavy metals effect on cyanobacteria synechocystisaquatilis study using absorption, fluorescence, flow cytometry, and photothermal measurements. Int J Thermophys 2011;32:762–73.Google Scholar

  • [6]

    Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 2001;477:7–21.Google Scholar

  • [7]

    Kalpaxis DL, Theos C, Xaplanteri MA, Dinos GP, Catsiki AV, Leotsinidis M. Biomonitoring of Gulf of Patras, N. Peloponnesus, Greece. Application of a biomarker suite including evaluation of translation efficiency in Mytilusgalloprovincialis cells. Environ Res 2003;37:1–8.Google Scholar

  • [8]

    Patra J, Baisakhi B, Mohapatro MK, Panda BB. Aluminium triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in plant cells in vivo 2000;465:1–9.Google Scholar

  • [9]

    Chapman PM. Environmental risks of inorganic metals and metalloids: a continuing, evolving scientific odyssey. Hum Ecol Risk Assess 2008;14:5–40.Google Scholar

  • [10]

    Zhang LP, Mehta SK, Liu ZP, Yang ZM. Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 2008;49:411–9.Google Scholar

  • [11]

    Lei YB, Yin CY, Li CY. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populusprzewalskii. Physiol Plantarum 2006;127:182–91.Google Scholar

  • [12]

    Rai LC, Singh AK, Mallick N. Studies on photosynthesis, the associated electron transport system and some physiological variables of Chlorella vulgaris under heavy metals stress. J Plant Physiol 1991;137:419–24.Google Scholar

  • [13]

    Myers J, Kratz WA. Relationship between pigment content and photosynthetic characteristics in a blue green alga. J Gen Physiol 1955;39:11–21.Google Scholar

  • [14]

    Blumwald E, Tel-Or E. Structural aspects of the Nostocmuscorum to salt. Arch Microbiol 1982;132:163–7.Google Scholar

  • [15]

    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:269–75.Google Scholar

  • [16]

    Herbert D, Phipps PJ, Strange RE. Chemical analysis of microbial cells. In: Norris JR, Ribbons DW, editors. Methods in microbiology VB. London: Academic Press, 1971:209–344.Google Scholar

  • [17]

    Sagisaka S. The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol 1976;57:308–9.Google Scholar

  • [18]

    Giannopolitis C, Ries SK. Superoxide dismutase. I. Occurance in higher plants. Plant Physiol 1977;59:309–14.Google Scholar

  • [19]

    Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil 1975;39:205–7.Google Scholar

  • [20]

    Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphor molybdic phosphor tungstic acid reagents. American J Enology Viticulture 1965;16:144–58.Google Scholar

  • [21]

    Ivleva NB, Golden SS. Circadian rhythms: methods and protocols. Method Mol Bio 2008;362:365–73.Google Scholar

  • [22]

    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.Google Scholar

  • [23]

    Rout GR, Das P. Effect of metal toxicity on plant growth and metabolism. I Zinc Agronomie 2003;23:3–11.Google Scholar

  • [24]

    Chris A. Effect of nickel stress on growth and antioxidants in cyanobacterium Cylindrospermum sp. Asian J Bio Sci 2012;7:13–7.Google Scholar

  • [25]

    Latifi A, Ruiz M, Zhang, CC. Oxidative stress in cyanobacteria. FEMS Microbiol Rev 2009;33:258–78.Google Scholar

  • [26]

    Shukla MK, Tripathi RD, Sharma N, Dwivedi S, Mishra S, Singh R, et al. Responses of cyanobacterium Anabaena doliolum during nickel stress. J Environ Biol 2009;30:871–6.Google Scholar

  • [27]

    Bajguz A. Suppression of chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch Environ Contam Toxicol 2011;60:406–16.Google Scholar

  • [28]

    Srivastava AK, Bhargava P, Rai LC. Salinity and copperinduced oxidative damage and changes in the antioxidative defense system of Anabaena doliolum W. J Microbiol Biotechnol 2005;22:1291–8.Google Scholar

  • [29]

    Qadir S, Qureshi MI, JavedS, Abdin MZ. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 2004;167:1171–81.Google Scholar

  • [30]

    Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 2009;11:861–905.Google Scholar

  • [31]

    Polit ES, Drazkiewicz M, Krupa Z. Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiol Plant 2010;32:169–75.Google Scholar

  • [32]

    Kumar MS, Praveenkumar R, Ilavarasi, A, Rajeshwari K, Thajuddin N. Oxidative stress response and fatty acid changes associated with bioaccumulation of chromium [Cr(VI)] by a fresh water cyanobacterium Chroococcus sp. Biotechnol Lett 2011;34:247–51.Google Scholar

  • [33]

    Sgherri C, Cosi E, Navari-Izzo F. Phenols and antioxidative status of Raphanussativus grown in copper excess. Physiol Plant 2003;118:21–8.Google Scholar

  • [34]

    Alia, Prasad KV, Saradhi P. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 1995;39:45–7.Google Scholar

  • [35]

    Matysik J, Alia BB, Mohanty P. Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 2002;82:525–32.Google Scholar

  • [36]

    Priya B, Premanandh J, Dhanalakshmi RT, Seethalakshmi T, Uma L, Prabaharan D, et al. Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. BMC Genomics 2007;8:435.Google Scholar

  • [37]

    Affenzeller MJ, Darehshouri A, Andosch A, Lutz C, Lutz-Meindl U. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulate. J Exp Bot 2009;60:939–54.Google Scholar

  • [38]

    Sharma SS, Dietz KJ. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 2009;14:43–50.Google Scholar

  • [39]

    Bhargava P, Thapar R, Srivastava AK, Mishra Y, Rai LC. Improving different abiotic stresses on growth, photosynthetic electron transport chain, nutrient uptake and enzymes activity of Cu-acclimated Anabaena doliokim. Plant Physiol 2008;165:306–16.Google Scholar

About the article

Corresponding author: Alvina Farooqui, Associate Professor (Jr.) Department of Bioengineering Integral University Kursi Road, Dasauli, P.O. Bas-ha Lucknow 226026, Uttar Pradesh, India


Received: 2015-04-14

Accepted: 2016-03-11

Published Online: 2016-10-14

Published in Print: 2016-12-01


Conflict of interest: The authors declare that they have no conflict of interest regarding this study.


Citation Information: Turkish Journal of Biochemistry, Volume 41, Issue 6, Pages 393–402, ISSN (Online) 1303-829X, ISSN (Print) 0250-4685, DOI: https://doi.org/10.1515/tjb-2016-0131.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in