Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 41, Issue 6

Issues

Adenosine deaminase activity and zinc levels in the serum of patients with diabetes mellitus

Diabetes mellitus hastalarında adenozin deaminaz aktivitesi ve çinko düzeyleri

Rana Turkal
  • Corresponding author
  • Marmara University Pendik Training and Research Hospital, Department of Clinical Biochemistry Laboratory, Fevzi Çakmak Mah. Muhsin Yazıcıoğlu Cad. No: 10 Üst Kaynarca/Pendik İstanbul 34899, Turkey, Phone: +905354728118
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Göksel Bahadır
  • Haseki Training and Research Hospital, Department of Clinical Biochemistry Laboratory, İstanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yasemin Erdoğan Döventaş
  • Haseki Training and Research Hospital, Department of Clinical Biochemistry Laboratory, İstanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Goncagül Haklar / Önder Şirikçi / Macit Koldaş
  • Haseki Training and Research Hospital, Department of Clinical Biochemistry Laboratory, İstanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-23 | DOI: https://doi.org/10.1515/tjb-2016-0137

Abstract

Objective:

Adenosine deaminase (ADA) specifically catalyzes the deamination of adenosine which has been proved to play an important role in modulation of insulin action on glucose metabolism. Zinc is an essential micronutrient that is directly involved in the physiology of insulin and may be an important agent to activate the ADA. We aimed to evaluate serum ADA activity, zinc levels and the relationship between these two parameters in diabetes mellitus.

Methods:

We investigated serum ADA activity and zinc levels in type I (n = 100) and type II diabetes mellitus patients (n = 151).

Results:

ADA activities of diabetic patients were significantly elevated, whereas zinc levels were significantly lower than those of healthy controls (p < 0.001). Compared with the well-controlled diabetic patient groups (HbA1c < 7%), the poorly controlled diabetic groups (HbA1c > 8%) showed significantly increased ADA activity (p < 0.001). In contrast, zinc concentrations in the poorly controlled diabetic groups were not significantly different from those in the well-controlled diabetic patients (p = 0.246). Significant positive correlation was observed between ADA activity and HbA1c (r = 0.794). There was no correlation between ADA activity and zinc levels (r = 0.043; p > 0.05).

Conclusion:

Elevated ADA activity in diabetic patients with poor glycemic control may be a useful marker for therapy modulation.

Özet

Amaç:

Adenozin deaminaz (ADA) adenozinin deaminasyonunu spesifik olarak katalize eder. Adenozinin, insülin aktivitesi üzerinden glukoz metabolizmasının düzenlenmesinde önemli rol oynadığı bilinmektedir. Çinko ise, insülinin fizyolojisiyle doğrudan ilişkili bir eser elementtir ve ADA’ın aktivasyonunda önemli etkileri olan bir ajan olduğu düşünülmüştür. Çalışmamızda diyabetli hasta gruplarında serum ADA aktivitesini ve çinko düzeylerini ve ADA ile çinko arasındaki ilişkiyi değerlendirmeyi amaçladık.

Metod:

Çalışmada tip I diabetes mellitusu olan 100 ve tip II diabetes mellitusu olan 151 diyabetli hastadan alınan serum örneklerinde ADA aktivitesi ve çinko düzeyleri çalışıldı.

Bulgular:

Diyabetli hasta gruplarının ADA değerleri, kontrol grubunun değerlerine göre anlamlı olarak yüksek; çinko değerleri kontrol grubunun değerlerine göre anlamlı olarak düşük bulundu (p < 0.001). Diyabetli hasta grupları, glisemik kontrol açısından karşılaştırıldığında ADA aktiviteleri, kötü glisemik kontrollü gruplarda (HbA1c > 8%), iyi glisemik kontrollü diyabetik olgulara (HbA1c < 7%) göre istatistiksel olarak anlamlı yüksek bulunurken (p < 0.001), çinko konsantrasyonları açısından istatistiksel olarak anlamlı fark bulunmadı (p = 0.246). Ayrıca ADA ile HbA1c arasında pozitif yönde güçlü ilişki (r = 0.794) tespit edilirken, ADA ile çinko düzeyleri arasında bir ilişki bulunamadı (r = 0.043, p > 0.05).

Sonuç:

Kötü glisemik kontrollü diyabetli hastalardaki yüksek ADA aktivitesi tedavinin düzenlenmesi için faydalı bir belirteç olabilir.

Keywords: Adenosine deaminase; Zinc; Diabetes mellitus; HbA1c

Anahtar kelimeler:: Adenozin deaminaz; Çinko; Diabetes mellitus; HbA1c

References

  • 1.

    Rutkiewicz J, Gorski J. On the role of insulin in regulation of adenosine deaminase activity in rat tissues. Fed Eur Biochem Soc Lett 1990;27:79–80.Google Scholar

  • 2.

    Hoshino T, Yamada K, Masuoka K, Tsuboi I, Itoh K, Nonaka K, et al. Elevated adenosine deaminase activity in the serum of patients with DM. Diabetes Res Clin Pract 1994;25:97–102.Google Scholar

  • 3.

    Kurtul N, Pence S, Akarsu E, Kocoglu H, Aksoy Y, Aksoy H. Adenosine deaminase activity in the serum of type II diabetic patients. Acta Medica 2004;47:33–5.Google Scholar

  • 4.

    Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr 1998;17:109–15.Google Scholar

  • 5.

    Al-Maroof R, Al-Sharbatti SS. Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type II diabetics. Saudi Med J 2006;27:344–50.Google Scholar

  • 6.

    Yılmaz T. Tip I diabetes mellitus. In (Ed. Büyüköztürk K, Atamer T, Dilmener M, Erzengin F, Kayısı A, Ökten A) İç Hastalıkları 2007:2; pp. 489–500, Nobel Tıp Kitabevleri, İstanbul.Google Scholar

  • 7.

    Ellis G, Goldberg DM. A reduced nicotinamide adenine dinucleotide linked kinetic assay for adenosine deaminase activity. J Lab Clin Med 1970;76:507–17.Google Scholar

  • 8.

    Green A. Adenosine receptor down-regulation and insulin resistance following prolonged incubation of adipocytes with an A1 adenosine receptor agonist. J Biol Chem 1987;262:15702–7.Google Scholar

  • 9.

    Warrier AC, Rao NY, Kulpati DS, Mishra TK, Kabı BC. Evaluation of adenosine deaminase and peroxidation levels in diabetes mellitus. Ind J Clin Biochem 1995;10:9–13.Google Scholar

  • 10.

    Barnett AH. Treating to goal: challenges of current management. Eur J Endocrinol 2004;151:3–7.Google Scholar

  • 11.

    Erciyas F, Taneli F, Arslan B, Uslu Y. Glycemic control, oxidative stress, and lipid profile in children with type 1 diabetes mellitus. Arch Med Res 2004;35:134–40.Google Scholar

  • 12.

    Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15:539–53.Google Scholar

  • 13.

    Budohoski L, Chllis RA, Cooney GJ, McManus B, Newsholme E. Reversal of dietary-induced insulin resistance in muscle of the rat by adenosine deaminase and an adenosine-receptor antagonist. Biochem J 1984;224:327–30.Google Scholar

  • 14.

    Arquilla ER, Packer S, Tarmas W, Miyamoto S. The effect of zinc on insulin metabolism. Endocrinology 1978;103:1440–9.Google Scholar

  • 15.

    Faure P, Roussel AM, Martini M, Favier A, Halimi S. Insulin sensitivity in zinc depleted rats. Assessment with euglycemic hyperinsulinemic clamp technique. Diab Metab 1991;17:325–31.Google Scholar

  • 16.

    Quaterman J, Mills C, Humphries W. The reduced secretion and sensitivity to insulin in Zn deficient rats. Biochem Biophys Res Commun 1966;25:354–8.Google Scholar

  • 17.

    Asano M, Okuda Y, Hirano K, Yamoaka T. Report of a case of pancreatic diabetes with severe zinc deficiency. J Jap Diab Soc 1995;38:317–522.Google Scholar

  • 18.

    Faure P, Corticelli P, Richard MJ, Arnaud J, Coudray C, Halimi S, et al. Lipid peroxidation and trace element status in diabetic ketone patients: influence of insulin therapy. Clin Chem 1993;5:789–93.Google Scholar

  • 19.

    Garg V, Gupta R, Goal R. Hypozincemia in diabetes mellitus. J Assoc Physicians India 1994;42:720–1.Google Scholar

  • 20.

    Isbir T, Tamer A, Taylor A, Isbir M. Zinc, copper and magnesium status in insulin dependent diabetes. Diabetes Res 1994;26: 41–5.Google Scholar

  • 21.

    Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes. Am Coll Nutr 2001;20:212–8.Google Scholar

  • 22.

    Nsonwu AC, Usoro CA, Etukudo MH, Usoro IN. Glycemic control and serum and urine levels of zinc and magnesium in diabetics in Calabar, Nigeria. Pak J Nutr 2006;5:75–8.Google Scholar

  • 23.

    Viktorinova A, Toserova E, Krizko M, Durackova Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism 2009;58:1477–82.Google Scholar

  • 24.

    Zargar AH, Shah NA, Masoodi S, Laway BA, Dar FA, Khan AR, et al. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J 1998;74: 665–8.Google Scholar

  • 25.

    Rusu ML, Marutoiu C, Rusu LD, Marutoiu OF, Hotoleanu C, Poanta L. Testing of magnesium, zinc and copper blood levels in diabetes mellitus patients. Seria F Chemia 2005;8:61–3.Google Scholar

  • 26.

    Canfield WK, Hambidge KM, Johnson LA. Zinc nutriture in type I DM: relationship to growth measures and metabolic control. J Ped Gastro Nutr 1984;3:577–84.Google Scholar

  • 27.

    Diwan AG, Pradhan AB, Lingojwar D, Krishna KK, Singh P, Almelkar SI. Serum zinc, chromium and magnesium levels in type II diabetes. J Diab Dev Ctries 2006;26:122–3.Google Scholar

  • 28.

    Kinlaw WB, Levine AS, Morley JE, Silvis SE, McClain CJ. Abnormal zinc metabolism in type II diabetes mellitus. Am J Med 1983;75:273–7.Google Scholar

  • 29.

    Fujimoto S. Studies on the relationship between blood trace metal concentration and the clinical status of patients with cerebrovascular disease, gastric cancer and diabetes mellitus. Hokoido Igaku Zasshi 1987;62:913–32.Google Scholar

  • 30.

    Brandao-Neto J, Silva CA, Figueiredo NB, Shuhama T, Silva JA, Oba L, et al. Renal handlig of zinc in insulin dependent diabetes mellitus patients. Biometals 2001;14:75–80.Google Scholar

  • 31.

    Franco R, Valenzuela A, Lluis C, Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev 1998;161:27–42.Google Scholar

  • 32.

    Coopers B, Sideraki V, Wilson DK, Dominguez DY, Clark SW, et al. The role of divalent cations in structure and function of murine adenosine deaminase. Protein Science 1997;6:1031–7.Google Scholar

  • 33.

    Luo CH, Chen J, Yang XJ, Li YQ, Xu B, Zheng DY, et al. Influence of zinc deprivation on thymus, spleen development and adenosine deaminase activity in young rats. Hua Xi Yi Ke Da Xue Bao 1989;20:199–202.Google Scholar

  • 34.

    Gheim HK, Al-saleh S, Al-Shammary FJ, Kordee ZS. Changes in adenosine deaminase activity in ageing cultured human cells and the role of zinc. Cell Biochem Funct 2003;21:275–82.Google Scholar

About the article

Received: 2016-08-28

Accepted: 2016-08-29

Published Online: 2016-09-23

Published in Print: 2016-12-01


Conflict of interest statement: The authors do not have any conflict of interest.


Citation Information: Turkish Journal of Biochemistry, Volume 41, Issue 6, Pages 423–429, ISSN (Online) 1303-829X, ISSN (Print) 0250-4685, DOI: https://doi.org/10.1515/tjb-2016-0137.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in