Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 41, Issue 6

Issues

Screening of cytotoxic, anti-angiogenic, anti-tumorogenic and antimicrobial activities of Anatolian Vipera ammodytes (Nose-horned viper) venom

Anadolu'da yayılış gösteren Vipera ammodytes (Burunlu Engerek) zehrinin sitotoksik, anti-anjiyogenik, anti-tümör ve antimikrobiyal aktivitelerinin taranması

Naşit İğci
  • Corresponding author
  • Faculty of Sciences and Arts, Nevşehir Hacı Bektaş Veli University – Department of Molecular Biology and Genetics, Nevşehir, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ayşe Nalbantsoy / Leman Gizem Erkan
  • Faculty of Veterinary Medicine, Uludağ University – Department of Physiology, Bursa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gözde Yılmaz Akça
  • Faculty of Veterinary Medicine, Uludağ University – Department of Physiology, Bursa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hüsniye Tansel Yalçın
  • Faculty of Science, Ege University – Basic and Industrial Microbiology Section, Department of Biology, İzmir, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Murat Yalçın
  • Faculty of Veterinary Medicine, Uludağ University – Department of Physiology, Bursa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bayram Göçmen
Published Online: 2016-12-08 | DOI: https://doi.org/10.1515/tjb-2016-0195

Abstract

Objective:

In the present study, we aimed to screen the cytotoxic, antimicrobial, anti-angiogenic and anti-tumorogenic activities of Anatolian Vipera ammodytes (Nose-horned Viper) crude venom.

Material and methods:

The cytotoxicity was screened against PC3, HeLa, CaCo-2, U-87MG, MCF-7 and Vero cells by using MTT assay. The antimicrobial activity on Escherichia coli ATCC 25922, E. coli 0157:H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, Salmonella typhimirium CCM 5445, Proteus vulgaris ATCC 6957, Bacillus cereus ATCC 7064 and Candida albicans ATCC 10239 was assayed by determining the minimum inhibitory concentration using the broth dilution method. Anti-angiogenic and anti-tumorogenic activity was assessed by using chick chorioallantoic membrane (CAM) assay.

Results:

The IC50 value of V. ammodytes venom on cultured cells varied from 1.8 to 7.0 μg/mL after 48 h treatment. Venom showed antimicrobial activity on P. vulgaris, S. aureus, S. epidermidis, E. faecium and C. albicans (the highest activity). The venom exhibited dose-dependent anti-angiogenic activity on CAM model at 2 and 10 μg/mL doses with scores of 1.1 and 2.0, respectively.

Conclusion:

The results of the present study contributed to the knowledge of the biological activities of Anatolian V. ammodytes venom and showed its potential for further bioactivity guided characterization studies.

Özet

Amaç:

Bu çalışmada, Vipera ammodytes (Burunlu Engerek) ham zehrinin sitotoksik, antimikrobiyal, anti-anjiyojenik ve anti-tümör aktivitelerinin taranmasını amaçlanmıştır.

Metod:

PC3, HeLa, CaCo-2, U-87MG ve MCF-7 kanser hücre hatları ve bir normal hücre hattı (Vero) kullanılarak MTT testi ile sitotoksite taraması yapılmıştır. Antimikrobiyal aktivite broth seyreltme metodu kullanılarak hesaplanan minimum inhibitör konsantrasyon ile değerlendirilmiştir. Escherichia coli ATCC 25922, E. coli 0157:H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, Salmonella typhimirium CCM 5445, Proteus vulgaris ATCC 6957, Bacillus cereus ATCC 7064 ve Candida albicans ATCC 10239 türleri kullanılmıştır. Anti-anjiyogenik anti-tümör aktivite civciv koryoallantoik membran (CAM) modeli ile değerlendirilmiştir.

Bulgular:

V. ammodytes zehrinin 48 saat sonunda hücreler üzerindeki IC50 değeri, 1.8 ve 7.0 μg/mL arasında değişmiştir. Zehir P. vulgaris, S. aureus, S. epidermidis ve C. albicans (en yüksek etki) üzerinde antimikrobiyal etki göstermiştir. CAM deney modelinde 2 ve 10 μg/mL zehir dozlarında (sırasıyla 1.1 ve 2.0 skorları ile) anjiyogenezde doza bağlı baskılanma görülmüştür.

Sonuç:

Bu çalışmanın sonuçları Anadolu'da bulunan V. ammodytes zehrinin sahip olduğu biyolojik aktiviteleri ortaya koymuş ve ileride yapılacak biyoaktivite rehberli karakterizasyon çalışmaları için sahip olduğu potansiyeli göstermiştir.

This article offers supplementary material which is provided at the end of the article.

Keywords: Anti-angiogenic effect; antimicrobial activity; cytotoxicity; snake venom; Vipera ammodytes.

Anahtar Kelimeler:: Anti-anjiyogenik etki; antimikrobiyal aktivite; sitotoksisite; yılan zehri; Vipera ammodytes

References

  • 1.

    Calderon LA, Sobrinho JC, Zaqueo KD, de Moura AA, Grabner AN, Mazzi MV, et al. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BioMed Res Int 2014;2014:203639.Google Scholar

  • 2.

    Koh DC, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci 2006;63:3030–41.Google Scholar

  • 3.

    Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, et al. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 2011;40:15–28.Google Scholar

  • 4.

    Mackessy SP. The field of reptile toxinology: snakes, lizards, and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Florida: CRC Press Taylor & Francis Group, 2010:3–23.Google Scholar

  • 5.

    De Oliveira Junior NG, e Silva Cardoso MH, Franco OL. Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cell Mol Life Sci 2013;70:4645–58.Google Scholar

  • 6.

    Göçmen B, Mebert K, İğci N, Akman B, Yıldız MZ, Oğuz MA, et al. New locality records for four rare species of vipers (Reptilia: Viperidae) in Turkey. Zool in the Middle East 2014;60:306–13.Google Scholar

  • 7.

    Ursenbacher S, Schweiger S, Tomović L, Crnobrnja-Isailović J, Fumagalli L, Mayer W. Molecular phylogeography of the nose-horned viper (Vipera ammodytes (Linnaeus, 1758)): evidence for high genetic diversity and multiple refugia in the Balkan peninsula. Mol Phylogenet Evol 2008;46:1116–28.Google Scholar

  • 8.

    Arikan H, Göçmen B, Kumlutaş Y, Alpagut-Keskin N, Ilgaz Ç, Yildizet M-Z. Electrophoretic characterisation of the venom samples obtained from various Anatolian snakes (Serpentes: Colubridae, Viperidae, Elapidae). North-West J Zool 2008;4:16–28.Google Scholar

  • 9.

    Yalcin HT, Ozen MO, Gocmen B, Nalbantsoy A. Effect of Ottoman viper (Montivipera xanthina (Gray, 1849)) venom on various cancer cells and on microorganisms. Cytotechnology 2014;66:87–94.Google Scholar

  • 10.

    Igci N, Demiralp DO. A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky, 1832) from Southeastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Arch Toxicol 2012;86:441–51.Google Scholar

  • 11.

    Nalbantsoy A, Baykan Erel S, Koksal C, Gocmen B, Yildiz MZ, Karabay Yavaşoğlu NÜ, et al. Viper venom induced inflammation with Montivipera xanthina (Gray, 1849) and the anti-snake venom activities of Artemisia absinthium L. in rat. Toxicon 2013;65:34–40.Google Scholar

  • 12.

    Ozen MO, İğci N, Yalçin HT, Goçmen B, Nalbantsoy A. Screening of cytotoxic and antimicrobial activity potential of Anatolian Macrovipera lebetina obtusa (Ophidia: Viperidae) crude venom. Front Life Sci 2015;8:363–370.Google Scholar

  • 13.

    Göçmen B, Heiss P, Petras D, Nalbantsoy A, Süssmuth RD. Mass spectrometry guided venom profiling and bioactivity screening of the Anatolian Meadow Viper, Vipera anatolica. Toxicon 2015;107:163–74.Google Scholar

  • 14.

    Tare TG, Sutar NK, Renapurkar DM. A study of snake venom yield by different methods of venom extraction. Amphibia-Reptilia 1986;7:187–91.Google Scholar

  • 15.

    Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54.Google Scholar

  • 16.

    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.Google Scholar

  • 17.

    Rebbaa A, Patil G, Yalcin M, Sudha T, Mousa SA. OT-404, multi-targeted anti-cancer agent affecting tumor proliferation, chemo-resistance, and angiogenesis. Cancer Lett 2013;332:55–62.Google Scholar

  • 18.

    Bürgermeister J, Paper DH, Vogl H, Linhardt RJ, Franz G. LaPSvS1, a (1→3)-β-galactan sulfate and its effect on angiogenesis in vivo and in vitro. Carbohydr Res 2002;337:1459–66.Google Scholar

  • 19.

    Krenn L, Paper DH. Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine 2009;16:1083–88.Google Scholar

  • 20.

    Mousa S, Mousa SA. Cellular and molecular mechanisms of nicotine’s proangiogenesis activity and its potential impact on cancer. J Cell Biochem 2006;97:1370–8.Google Scholar

  • 21.

    Mousa SA, Yalcin M, Bharali DJ, Meng R, Tang H-Y, Lin HY, et al. Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer 2012;76:39–45.Google Scholar

  • 22.

    CLSI (Clinical and Laboratory Standards Institute). Performance standards; for antimicrobial susceptibility testing, nineteenth informational supplement, 2009;(M100-S19).

  • 23.

    Araki S, Ishida T, Yamamoto T, Kaji K, Hayashi H. Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells. Biochem Biophys Res Commun 1993;190:148–53.Google Scholar

  • 24.

    Incerpi S, De Vito P, Luly P, Rufini S. Effect of ammodytin L from Vipera ammodytes on L-6 cells from rat skeletal muscle. Biochim Biophys Acta 1995;1268:137–42.Google Scholar

  • 25.

    Leonardi A, Sajevic T, Kovačič L, Pungerčar J, Balija ML, Halassy B, et al. Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour activity. Toxicon 2014;77:141–55.Google Scholar

  • 26.

    Rufini S, Cesaroni MP, Balestro N, Luly P. Proliferative effect of ammodytin L from the venom of Vipera ammodytes on 208F rat fibroblasts in culture. Biochem J 1996;320:467–72.Google Scholar

  • 27.

    Georgieva D, Risch M, Kardas A, Buck F, von Bergen M, Betzel C. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. J Prot Res 2008;7:866–86.Google Scholar

  • 28.

    Jamunaa A, Vejayan J, Halijah I, Sharifah SH, Ambu S. Cytotoxicity of southeast Asian snake venoms. J Venom Anim Toxins incl Trop Dis 2012;18:150–6.Google Scholar

  • 29.

    Nalbantsoy A, Karabay-Yavasoglu NU, Sayim F, Deliloglu-Gurhan I, Gocmen B, Arikan H, et al. Determination of in vivo toxicity and in vitro cytotoxicity of venom from Cypriot blunt-nosed viper Macrovipera lebetina lebetina and antivenom production. J Venom Anim Toxins incl Trop Dis 2012;18:208–16.Google Scholar

  • 30.

    Samel M, Trummal K, Siigur E, Siigur J. Effect of HUVEC apoptosis inducing proteinase from Vipera lebetina venom (VLAIP) on viability of cancer cells and on platelet aggregation. Toxicon 2012;60:648–55.Google Scholar

  • 31.

    Tanjoni I, Weinlich R, Della-Casa MS, Clissa PB, Saldanha-Gama RF, de Freitas MS, et al. Jararhagin, a snake venom metalloproteinase, induces a specialized form of apoptosis (anoikis) selective to endothelial cells. Apoptosis 2005;10:851–61.Google Scholar

  • 32.

    Gerl L, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis 2005;26:263–70.Google Scholar

  • 33.

    Pilorget A, Conesa M, Sarray S, Michaud-Levesque J, Daoud S, Kim KS, et al. Lebectin, a Macrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo. J Cell Physiol 2007;211:307–15.Google Scholar

  • 34.

    Momic T, Cohen G, Reich R, Arlinghaus FT, Eble JA, Marcinkiewicz C, et al. Vixapatin (VP12), a c-type lectin-protein from Vipera xantina palestinae venom: characterization as a novel anti-angiogenic compound. Toxins 2012;4:862–77.Google Scholar

  • 35.

    Swenson S, Costa F, Ernst W, Fujii G, Markland FS. Contortrostatin, a snake venom disintegrin with anti-angiogenic and anti-tumor activity. Pathophysiol Haemost Thromb 2005;34:169–76.Google Scholar

  • 36.

    Yeh C-H, Peng H-C, Yang R-S, Huang T-F. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective αvβ3 blockade of endothelial cells. Mol Pharmacol 2001;59:1333–42.Google Scholar

  • 37.

    Bazaa A, Pasquier E, Defilles C, Limam I, Kessentini-Zouari R, Kallech-Ziri O, et al. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS One 2010;5:e10124.Google Scholar

  • 38.

    Zhou Q, Sherwin RP, Parrish C, Richters V, Groshen SG, Tsao-Wei D, et al. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits breast cancer progression. Breast Cancer Res Treat 2000;61:249–60.Google Scholar

  • 39.

    Markland FS, Shieh K, Zhou Q, Golubkov V, Sherwin R, Richters V, et al. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis 2001;31:183–91.Google Scholar

  • 40.

    Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 2014;17:471–94.Google Scholar

  • 41.

    Kuete V. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med 2010;76:1479–91.Google Scholar

  • 42.

    San TM, Vejayan J, Shanmugan K, Ibrahim H. Screening antimicrobial activity of venoms from snakes commonly found in Malaysia. J Appl Sci 2010;10:2328–32.Google Scholar

  • 43.

    Samel M, Vija H, Kurvet I, Künnis-Beres K, Trummal K, Subbi J, et al. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins 2013;5:203–23.Google Scholar

About the article

Corresponding authors: Dr. Naşit İğci, Faculty of Sciences and Arts, Nevşehir Hacı Bektaş Veli University – Department of Molecular Biology and Genetics, Nevşehir, Turkey


Received: 2015-06-25

Accepted: 2016-05-31

Published Online: 2016-12-08

Published in Print: 2016-12-01


Conflict of interest statement: The authors have no conflict of interest.

Ethical considerations: NI and BG have ethical permission from Ege University Animal Experiments Ethics Committee (2010–43) for venom collection from vipers. Also, they have permission from the Republic of Turkey Ministry of Forest and Water Affairs to collect vipers in the nature for venom sampling.


Citation Information: Turkish Journal of Biochemistry, Volume 41, Issue 6, Pages 483–491, ISSN (Online) 1303-829X, ISSN (Print) 0250-4685, DOI: https://doi.org/10.1515/tjb-2016-0195.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mehmet Zülfü Yıldız, Gözde Gürelli, Deniz Yalçınkaya, Bahadır Akman, Naşit İğci, Mert Karış, and Mehmet Anıl Oğuz
Commagene Journal of Biology, 2019

Comments (0)

Please log in or register to comment.
Log in