Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 43, Issue 4

Issues

Betaine treatment decreased serum glucose and lipid levels, hepatic and renal oxidative stress in streptozotocin-induced diabetic rats

Betain tedavisi streptozotosin ile diabet oluşturulan sıçanlarda serum glikoz ve lipit düzeylerini, karaciğer ve böbreklerde oksidatif stresi azalttı

Betül Evran
  • Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abdurrahman Fatih Aydın
  • Corresponding author
  • Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Buse Uğuralp
  • Department of Pathology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mehmet Sar
  • Department of Pathology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Semra Doğru-Abbasoğlu
  • Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Müjdat Uysal
  • Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-04 | DOI: https://doi.org/10.1515/tjb-2016-0183

Abstract

Objective

The present study was aimed to investigate the effects of betaine (BET) on streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. Additionally, the efficiency of BET was compared with metformin (MET), a standard oral antidiabetic drug.

Methods

STZ (55 mg/kg body weight; i.p.) was injected to male Wistar rats. Rats with DM were treated with BET (1 g/kg body weight/day;) or MET (500 mg/kg body weight/day;) for 4 weeks. Blood glycated hemoglobin (HbA1c), serum glucose, lipids, hepatic and renal function tests and urinary protein levels were examined. Reactive oxygen species (ROS) formation, malondialdehyde (MDA), glutathione (GSH) levels, and ferric reducing antioxidant power (FRAP) were also determined in liver and kidney.

Results

Glucose, HbA1c, and serum lipids increased and liver and kidney function tests were impaired in diabetic rats. Hepatic and renal ROS formation and MDA levels were elevated, hepatic, but not renal GSH and FRAP levels were decreased. BET decreased blood HbA1c, serum glucose and lipid levels and urine protein levels. BET diminished hepatic and renal prooxidant status.

Conclusion

Our results indicate that BET may be effective in decreasing STZ-induced high levels of blood HbA1c, and serum glucose and lipid levels and prooxidant status in liver and kidney tissues.

Özet

Amaç

Bu çalışmada betainin (BET) streptozotosin (STZ) ile diabet oluşturulan sıçanlarda etkisini araştırmak amaçlandı. Ayrıca BET’in etkisi standart oral antidiyabetik ilaç olan metforminle (MET) karşılaştırıldı.

Metod

STZ (55 mg/kg vücut ağırlığı;i.p.) erkek Wistar sıçanlara uygulandı. 4 hafta süreyle diyabetik sıçanlara BET (1/kg vücut ağırlığı/gün; diyetle) veya MET (500 mg/kg vücut ağırlığı/gün; içme suyunda) uygulaması yapıldı. Kanda glike hemoglobin (HbA1c), serumda glikoz, lipid ve karaciğer ve böbrek fonksiyon testleri ve idrarda protein düzeyleri ölçüldü. Ayrıca, karaciğer ve böbrek dokusunda reaktif oksijen türleri oluşumu, malondialdehit (MDA), glutatyon (GSH) düzeyleri ve antioksidan aktivite (FRAP) tayin edildi.

Bulgular

Diyabetik sıçanlarda glikoz, HbA1c ve serum lipit düzeyleri arttı, karaciğer ve böbrek fonksiyon testleri bozuldu. Karaciğer ve böbrekte ROS oluşumu ve MDA düzeyleri arttı, karaciğerde GSH ve FRAP düzeyleri azaldı. BET uygulaması kan HbA1c, serum glikoz ve lipit düzeylerini ve idrar protein düzeylerini azalttı. BET ayrıca karaciğer ve böbrekte prooksidan durumu baskıladı.

Sonuç

Sonuçlarımız BET’in STZ uygulamasıyla artmış olan kan HbA1c, serum glikoz ve lipit düzeyleri ile karaciğer ve böbrek dokularında prooksidan durumu azaltmada etkili olduğunu gösterdi.

Keywords: Diabetes mellitus; Betaine; Oxidative stress; Liver; Kidney; Rat

Anahtar Kelimeler: Diabetes mellitus; Betain; Oksidatif stres; Karaciğer; Böbrek; Sıçan

References

  • 1.

    Kassab A, Piwowar A. Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie 2012;94:1837–48.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 2.

    De M Bandeira S, Da Fonseca LJ, Da S Guedes G, Rabelo LA, Goulart MO, Vasconcelos SM. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int J Mol Sci 2013;14:3265–84.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 3.

    Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013;93:137–88.CrossrefWeb of SciencePubMedGoogle Scholar

  • 4.

    Karaağaç N, Salman F, Doğru-Abbasoğlu S, Uysal M. Changes in prooxidant-antioxidant balance in tissues of rats following long-term hyperglycemic status. Endocr Res 2011;36:124–33.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 5.

    Ong KW,Hsu A, Song L, Huang D, Tan BK. Polyphenols-rich Vernonia amygdalina shows anti-diabetic effects in streptozotocin-induced diabetic rats. J Ethnopharmacol 2011;133:598–607.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 6.

    Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, Mansour MA. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem Biol Interact 2011;192:233–42.Web of SciencePubMedCrossrefGoogle Scholar

  • 7.

    Hao HH, Shao ZM, Tang DQ, Lu Q, Chen X, Yin XX, et al. Preventive effects of rutin on the development of experimental diabetic nephropathy in rats. Life Sci 2012;91:959–67.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 8.

    İbrahim DS, El-Maksoud MA. Effect of strawberry (Fragaria x ananassa) leaves extract on diabetic nephropathy in rats. Int J Exp Path 2015;96:87–93.CrossrefGoogle Scholar

  • 9.

    Dey A, Lakshmanan J. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food Funct 2013;4:1148–84.Web of ScienceCrossrefPubMedGoogle Scholar

  • 10.

    Ueland PM, Holm PI, Hustad S. Betaine: a key modulator of one-carbon metabolism and homocysteine status. Clin Chem Lab Med 2005;43:1069–75.PubMedGoogle Scholar

  • 11.

    Day CR, Kempson SA. Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta 2016;1860:1098–106.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 12.

    Lv S, Fan R, Du Y, Hou M, Tang Z, Ling W, et al. Betaine supplementation attenuates atherosclerotic lesion in apolipoprotein E-deficient mice. Eur J Nutr 2009;48:205–12.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 13.

    Balkan J, Öztezcan S, Küçük M, Çevikbaş U, Koçak-Toker N, Uysal M. The effect of betaine treatment on triglyceride levels and oxidative stress in the liver of ethanol-treated guinea pigs. Exp Toxicol Pathol 2004;55:505–9.PubMedCrossrefGoogle Scholar

  • 14.

    Kwon DY, Jung YS, Kim SJ, Park HK, Park JH, Kim YC. Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats. J Nutr 2009;139:63–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • 15.

    Balkan J, Parıldar FH, Doğru-Abbasoğlu S, Aykaç-Toker G, Uysal M. The effect of taurine or betaine pretreatment on hepatotoxicity and prooxidant status induced by lipopolysaccharide treatment in the liver of rats. Eur J Gastroenterol Hepatol 2005;17:917–21.CrossrefPubMedGoogle Scholar

  • 16.

    Bingül İ, Başaran-Küçükgergin C, Aydın AF, Çoban J, Doğan-Ekici I, Doğru-Abbasoğlu S, et al. Betaine treatment decreased oxidative stress, inflammation, and stellate cell activation in rats with alcoholic liver fibrosis. Environ Toxicol Pharmacol 2016;45:170–8.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 17.

    Ozturk F, Ucar M, Ozturk IC, Vardi N, Batcioglu K. Carbon tetrachloride-induced nephrotoxicity and protective effect of betaine in Sprague-Dawley rats. Urology 2003;62:353–6.CrossrefPubMedGoogle Scholar

  • 18.

    Go EK, Jung KJ, Kim JY, Yu BP, Chung HY. Betaine suppresses proinflammatory signaling during aging: The involvement of nuclear factor-kB via nuclear factor-inducing kinase/IkB kinase and mitogen-activated protein kinases. J Gerontol 2005;60:1252–64.CrossrefGoogle Scholar

  • 19.

    Fan CY, Wang MX, Ge CX, Wang X, Li JM, Kong LD. Betaine supplementation protects against high-fructose-induced renal injury in rats. J Nutr Biochem 2014;25:353–62.CrossrefWeb of SciencePubMedGoogle Scholar

  • 20.

    Hagar H, El Medany A, Salam R, El Medany G, Nayal OA. Betaine supplementation mitigates cisplatin-induced nephrotoxicity by abrogation of oxidative/nitrosative stress and suppression of inflammation and apoptosis in rats. Exp Toxicol Pathol 2015;67:133–41.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 21.

    Wijeekoon EP, Hall B, Ratnam S, Brosnan ME, Zeisel SH, Brosnan JT. Homocysteine metabolism in ZDF (type 2) diabetic rats. Diabetes 2005;54:3245–51.CrossrefPubMedGoogle Scholar

  • 22.

    Lever M, Slow S, McGregor DO, Dellow WJ, George PM, Chambers ST. Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: an observational study. Cardiovasc Diabetol 2012;11:34.CrossrefWeb of SciencePubMedGoogle Scholar

  • 23.

    Jeong JJ, Kim YT, Seo WS, Yang HJ, Lee YS, Cha JY. Hypoglycemic and hepatoprotective effects of betaine on streptozotocin-induced diabetic rats. J Life Sci 2006;16:767–72.CrossrefGoogle Scholar

  • 24.

    Jung GY, Won SB, Kim J, Jeon S, Han A, Kwon YH. Betaine alleviates hypertriglycemia and tau hyperphosphorylation in db/db mice. Toxicol Res 2013;29:7–14.PubMedCrossrefGoogle Scholar

  • 25.

    Cicero AF, Tartagni E, Ertek S. Metformin and its clinical use: new insights for an old drug in clinical practice. Arch Med Sci 2012;8:907–17.Web of SciencePubMedGoogle Scholar

  • 26.

    Bhat A, Sebastiani G, Bhat M. Systematic review: Preventive and therapeutic applications of metformin in liver disease. World J Hepatol 2015;7:1652–59.CrossrefPubMedGoogle Scholar

  • 27.

    Coperchini F, Leporati P, Rotondi M, Chiocato L. Expanding the therapeutic spectrum of metformin: fromd iabetes to cancer. J Endocrinol Invest 2015;38:1047–55.CrossrefGoogle Scholar

  • 28.

    Waisundara VY, Hsu A, Huang D, Tan BK. Scutellaria baicalensis enhances the anti-diabetic activity of metformin in streptozotocin-induced diabetic Wistar rats. Am J Chin Med 2008;36:517–40.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 29.

    Zheng T,Shu G, Yang Z, Mo S, Zhao Y, Mei Z. Antidiabetic effect of total saponins from Entadaphaseoloides (L.) Merr. İn type 2 diabetic rats. J Ethnopharmacol 2012;139:814–21.PubMedCrossrefGoogle Scholar

  • 30.

    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54.CrossrefPubMedGoogle Scholar

  • 31.

    Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999;27:612–6.PubMedGoogle Scholar

  • 32.

    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–8.CrossrefGoogle Scholar

  • 33.

    Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882–8.PubMedGoogle Scholar

  • 34.

    Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’’: the FRAP assay. Anal Biochem 1996;239:70–6.CrossrefPubMedGoogle Scholar

  • 35.

    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:76–85.PubMedCrossrefGoogle Scholar

  • 36.

    Dey A, Swamaminathan K. Hyperglycemia-induced mitochondrial alterations in liver. Life Sci 2010;87:197–214.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 37.

    Parvizi MR, Parviz M, Tavangar SM, Soltani N, Kadkhodaee M, Seifi B, et al. Protective effect of magnesium on renal function in STZ-induced diabetic rats. J Diabetes Metab Disord 2014;14:84.Google Scholar

  • 38.

    Giannarelli R, Aragona M, Coppelli A, Del Prato S. Reducing insulin resistance with metformin: the evidence today. Diabetes Metab 2003;29:6S28–35.PubMedGoogle Scholar

  • 39.

    Tzeng TF, Liou SS, Chang CJ, Liu IM. The ethanol extract of Zingiber zerumbet attenuates streptozotocin-induced diabetic nephropathy in rats. Evid Based Complement Alternat Med 2013;2013:340645.PubMedGoogle Scholar

  • 40.

    Kim SK, Seo JM, Chae YR, Jung YS, Park JH, Kim YC. Alleviation of dimethyl nitrosamine-induced liver injury and fibrosis by betaine supplementation in rats. Chem Biol Interact 2009;177:204–11.CrossrefGoogle Scholar

  • 41.

    Caro AA, Cederbaum AI. Antioxidant properties of S-adenosyl-methionine in Fe2+ initiated oxidations. Free Radic Biol Med 2004;36:1303–16.CrossrefPubMedGoogle Scholar

  • 42.

    Zhao L, Gao H, Zhao Y, Lin D. Metabolomic analysis of the therapeutic effect of Zhibai Dihuang Pill in treatment of streptozotocin-induced diabetic nephropathy. J Ethnopharmacol 2012;142:647–56.CrossrefPubMedGoogle Scholar

  • 43.

    Chen L, Chen YM, Wang LJ, Wei J, Tan YZ, Zhou JY, et al. Higher homocysteine and lower betaine increase the risk of microangiopathy in patients with diabetes mellitus varying the GG genotype of PEMT G774C. Diabetes Metab Res Rev 2013;29:607–17.CrossrefGoogle Scholar

  • 44.

    Schartum-Hansen H, Ueland PM, Pedersen ER, Meyer K, Ebbing M, Bleie Ø, et al. Assesment of urinary betaine as a marker of diabetes mellitus in cardiovascular patients. PLoS One 2013;8:e69454.CrossrefGoogle Scholar

  • 45.

    Kim YG, Lim HH, Lee SH, Shin MS, Kim CJ, Yang HJ. Betaine inhibits vascularization via suppression of Akt in the retinas of streptozotocin-induced hyperglycemic rats. Mol Med Rep 2015;12:1639–44.Web of SciencePubMedCrossrefGoogle Scholar

About the article

Corresponding author: Abdurrahman Fatih Aydın, MD, Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, 34093, Istanbul, Turkey, Tel.:+90 212 414 21 88


Received: 2016-10-12

Accepted: 2017-02-07

Published Online: 2017-04-04


Conflict of interest statement: The authors report no conflict of interest.

Ethical Considerations: This study was approved by the Animal Care and Use Committee of the University of Istanbul (Project No: 2013/77).


Citation Information: Turkish Journal of Biochemistry, Volume 43, Issue 4, Pages 343–351, ISSN (Online) 1303-829X, DOI: https://doi.org/10.1515/tjb-2016-0183.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in