Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 43, Issue 4

Issues

Ecological and phytochemical attributes of endemic Ferula gummosa Boiss. at vegetative and generative stages

Endemik Ferula gummosa Boiss’in Vejetatif ve Üretici Aşamalarında Ekolojik ve Fitokimyasal Özellikleri

Leila Karamzadeh
  • Biochemistry Lab., Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vahab Jafarian
  • Corresponding author
  • Biochemistry Lab., Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elahe Vatankhah
  • Plant Physiology Lab., Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-12 | DOI: https://doi.org/10.1515/tjb-2016-0237

Abstract

Objective

This study was accomplished to find out the ecological as well as some biochemical and physiological properties of Ferula gummosa Boiss.

Methods

Soil samples were analysed. Different plant parts collected during different stages were analysed biochemically (catalase, peroxidase, ascorbate peroxidase and total protein) and physiologically (proline, sugars, phenolic components and photosynthetic pigments).

Results

Soil analysis showed that pH, EC and phosphatase activity were approximately 6.5–6.8, 200 μS/cm and 890 μmol/min, respectively. Among measured elements in soil, only P and Na had significantly higher concentrations at generative and vegetative stages, respectively. The biochemical and physiological analyses of F. gummosa Boiss. leaves and roots showed that the content of proline, sugar and phenolic components were significantly higher at generative stage than vegetative stage, while the content of photosynthetic pigments and activities of catalase, peroxidase and ascorbate peroxidase were significantly lower. Our qualitative analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the total protein bands of generative stage were more intensive than vegetative stage.

Conclusion

The phytochemical results strongly supported the idea that the metabolic changes were developmental-dependent.

Özet

Amaç

Bu çalışma, Ferula gummosa Boiss’in ekolojik ve bazı biyokimyasal ve fizyolojik özelliklerini bulmak için yapılmıştır.

Material ve Metod

Toprak numuneleri analiz edildi. Farklı aşamalarda toplanan farklı bitki parçaları, biyokimyasal olarak (katalaz, peroksidaz, askorbat peroksidaz ve toplam protein) ve fizyolojik olarak (prolin, şekerler, fenolik bileşenler ve fotosentetik pigmentler) analiz edildi.

Bulgular

Toprak analizi, pH, EC ve fosfataz aktivitesinin sırasıyla yaklaşık 6.5–6.8, 200 μS/cm ve 890 μmol/dk olduğunu göstermiştir. Toprakta ölçülen elementler arasında sadece P ve Na konsantrasyonları üretken vejetatif evrelerde önemli derecede yüksekti. Ferula gummosa Boiss’in yapraklarında ve köklerinde yapılan biyokimyasal ve fizyolojik analizlerde, prolin, şeker ve fenolik bileşenlerin içeriği vejetatif evreye göre üretken aşamada önemli derecede yüksekken, fotosentetik pigmentlerin içeriği ve katalaz, peroksidaz ve askorbat peroksidaz aktiviteleri önemli ölçüde daha düşük olduğu göstermiştir. Sodyum dodesil sülfat poliakrilamid jel elektroforezi ile nitel analiz sonucu, generatif evre toplam protein bantlarının vejetatif evreye göre daha yoğun olduğunu göstermiştir.

Sonuç

Fitokimyasal sonuçlar metabolik değişimlerin gelişimsel olarak bağımlı olduğu fikrini kuvvetle desteklemektedir.

Keywords: Ferula gummosa Boiss; Antioxidant enzymes; Developmental stages; Photosynthetic pigments; Soil analysis

Anahtar Kelimeler: Ferula gummosa Boiss; Antioksidan enzimler; Gelişim aşamaları; Fotosentetik pigmentler; Toprak analizi

References

  • 1.

    Omoruyi B, Bradley G, Afolayan A. Ethnomedicinal survey of medicinal plants used for the management of HIV/AIDS infection among local communities of Nkonkobe Municipality, Eastern Cape, South Africa. J Med Plant Res 2012;6:3603–8.Google Scholar

  • 2.

    Shahbazi A, Lotfi M, Mostafavi Kh, Asadian G, Heidarian AR. Effect of Persian galbanum (Ferula gummosa L.) extract on seed germination and growth of some weeds. AJAR 2011;6:5106–11.Google Scholar

  • 3.

    Nadjafi F, Bannayan M, Tabrizi L, Rastgoo M. Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. J Arid Environ 2006;64:542–7.CrossrefGoogle Scholar

  • 4.

    Ghorbani A, Mogharrabi M, Mohebbati R, Mousavi SM, Hasan zadeh S, Emamian M, et al. Effect of Long-term administration of Ferula gummosa root extract on serum oxidant-antioxidant status. Iran J Pharm Sci 2016;12:85–96.Google Scholar

  • 5.

    Gharaei R, Akrami H, Heidari S, Asadi MH, Jalili A. The suppression effect of Ferula gummosa Boiss. extracts on cell proliferation through apoptosis induction in gastric cancer cell line. Eur J Integr Med 2013;5:241–47.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Sayyah M, Mandgary A, Kamalinejad M. Evaluation of the anticonvulsant activity of the seed acetone extract of Ferula gummosa Boiss. against seizures induced by pentylenetetrazole and electroconvulsive shock in mice. J Ethnopharmacol 2002;82:105–9.PubMedCrossrefGoogle Scholar

  • 7.

    Ebrahimzadeh H, Abrishamchi P. Changes in IAA, phenolic compounds, peroxidase, IAA oxidase, and polyphenol oxidase in relation to flower formation in Crocus sativus. Russ J Plant Physiol 2001;48:190–5.CrossrefGoogle Scholar

  • 8.

    Bates LR, Waldren P, Teare I. Rapid determination of free proline for water-stress studies. Plant Soil 1973;39:205–7.CrossrefGoogle Scholar

  • 9.

    Kanmegne G, Omokolo ND. Changes in phenol content and peroxidase activity during in vitro organogenesis in Xanthosoma sagittifolium L. Plant Growth Regul 2003;40:53–7.CrossrefGoogle Scholar

  • 10.

    Zhang D, Ren L, Yue JH, Wang L, Zhuo LH, Shen XH. A comprehensive analysis of flowering transition in Agapanthus praecox ssp. orientalis (Leighton) Leighton by using transcriptomic and proteomic techniques. J Proteomics 2013;80:1–25.CrossrefWeb of SciencePubMedGoogle Scholar

  • 11.

    Tavarini S, Degl’Innocenti E, Remorini D, Massai R, Guidi L. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem 2008;107:282–8.CrossrefWeb of ScienceGoogle Scholar

  • 12.

    Kichtenthaler H, Wellburn A. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvent. Biochem Soc Trans 1983;603:591–3.Google Scholar

  • 13.

    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analy Biochem 1976;72:248–54.CrossrefGoogle Scholar

  • 14.

    Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 1969;6:24–7.CrossrefGoogle Scholar

  • 15.

    Nakano Y, Asada K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 1987;28:131–40.Google Scholar

  • 16.

    Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121–6.CrossrefPubMedGoogle Scholar

  • 17.

    Tabatabai M, Bremner J. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1969;1:301–7.CrossrefGoogle Scholar

  • 18.

    Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustoš P, Zupan M, et al. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 2007;148:107–14.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 19.

    Anjum NA, Gill SS, Gill R, editors. Plant adaptation to environmental change: significance of amino acids and their derivatives. CABI, 2014:68–97.Google Scholar

  • 20.

    Ammar I, Ennouri M, Bali O, Attia H. Characterization of two prickly pear species flowers growing in Tunisia at four flowering stages. LWT-Food Sci Technol 2014;59:448–54.CrossrefWeb of ScienceGoogle Scholar

  • 21.

    Büttner M. The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol 2010;12:35–41.Web of ScienceCrossrefGoogle Scholar

  • 22.

    Vergauwen R, Van den Ende W, Van Laere A. The role of fructan in flowering of Campanula rapunculoides. J Exp Bot 2000;51:1261–6.PubMedCrossrefGoogle Scholar

  • 23.

    Yu K, Lenz-Wiedemann V, Chen X, Bareth G. Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects. ISPRS J Photogramm Remote Sens 2014;97:58–77.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Duman JG, Wisniewski MJ. The use of antifreeze proteins for frost protection in sensitive crop plants. Environ Exp Bot 2014;106:60–9.CrossrefWeb of ScienceGoogle Scholar

  • 25.

    Zhang G, Gifford DJ, Cass DD. RNA and protein synthesis in sperm cells isolated from Zea mays L. pollen. Sex Plant Reprod 1993;6:239–43.Google Scholar

  • 26.

    Talano MA, Agostini E, Medina M, Reinoso H, del Carmen Tordable M, Tigier HA, et al. Changes in ligno-suberization of cell walls of tomato hairy roots produced by salt treatment: the relationship with the release of a basic peroxidase. J Plant physiol 2006;163:740–9.PubMedCrossrefGoogle Scholar

  • 27.

    Ye Z, Rodriguez R, Tran A, Hoang H, de los Santos D, Brown S, et al. The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci 2000;158:115–27.CrossrefPubMedGoogle Scholar

  • 28.

    Bañuelos GR, Argumedo R, Patel K, Ng V, Zhou F, Vellanoweth RL. The developmental transition to flowering in Arabidopsis is associated with an increase in leaf chloroplastic lipoxygenase activity. Plant Sci 2008;174:366–73.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 29.

    White P, editor. Marschner’s mineral nutrition of higher plants. Academic Press, 2012:49–70.Google Scholar

  • 30.

    Šarapatka B, Dudová L, Kršková M. Effect of pH and phosphate supply on acid phosphatase activity in cereal roots. Biol Brat 2004;59:127–31.Google Scholar

About the article

Received: 2016-11-21

Accepted: 2017-05-23

Published Online: 2017-08-12


Conflict of interest statement: The authors have no conflict of interest.


Citation Information: Turkish Journal of Biochemistry, Volume 43, Issue 4, Pages 393–402, ISSN (Online) 1303-829X, DOI: https://doi.org/10.1515/tjb-2016-0237.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in