Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 43, Issue 4

Issues

Foliar application effects of salicylic acid and jasmonic acid on the essential oil composition of Salvia officinalis

[Salvia officinalis’in uçucu yağ bileşimi üzerinde Salisilik asit ve Jasmonik asidin yapraktan uygulama etkileri]

Mehrab YadegariORCID iD: http://orcid.org/0000-0002-3122-4686
Published Online: 2018-03-14 | DOI: https://doi.org/10.1515/tjb-2017-0183

Abstract

Aim

In this research, the effects of two elicitors [jasmonic acid (JA) and salicylic acid (SA)] on the accumulation of essential oils in the seed cultures of Sage (Salvia officinalis L.) were studied.

Materials and methods

This research was conducted at the research field of Islamic Azad University, Shahrekord branch located at 50°56/E longitude, 32°18/N latitude during 2015 and 2016. The study area was classified as semi cold with an average temperature of 11.5°C and semi-arid with 329.9 mm of average rainfall. Seeds of sage were planted under field conditions. The following treatments were applied after the plants had four leaves: water, acetone, JA (0.1051, 0.2102, 0.4204, 0.8408 g/L), SA (0.0138, 0.138, 0.276, 0.552 g/L) and control.

Results

Twenty-seven essential oils were obtained and the most notable were: α-pinene, limonene, β-pinene, camphor, thymol, camphene, thujone-trans, thujone-cis, 1,8-cineole, borneol, borneol acetate, carvacrol, α-humulene, caryophyllene. JA was more effective in stimulating the accumulation of α-pinene, limonene, β-pinene, camphor, thymol, camphene, thujone-trans, thujone-cis, 1,8-cineole, borneol, borneol acetate, carvacrol, α-humulene and caryophyllene.

Conclusion

JA and SA had increasing effects on essential oils. The best treatments were found to be JA 0.1051 g/L, JA 0.2102 g/L and SA 0.138 g/L.

Özet

Amaç

Bu çalışmada iki elisitörün [jasmonic acid (JA) ve salicylic acid (SA)], adaçayının (Salvia officinalis L.) tohum kültürlerinde uçucu yağların birikimi üzerine etkileri araştırılmıştır.

Gereç ve yöntemler

Bu araştırma, 2015 ve 2016 yılları arasında 50°56/E enlem, 32°18/N enleminde bulunan İslam Azad Üniversitesi Shahrekord Şubesi araştırma alanında yürütülmüştür. Çalışma alanı, yarı soğuk, ortalama sıcaklık 11.5°C ve yarı kurak 329.9 mm ortalama yağışa sahip olarak sınıflandırıldı. Ada çayı tohumları tarla koşullarında ekildi. Şu uygulamalar bitkiler 4 yaprak sahibi olduktan sonra uygulandı: su, aseton, JA (0.1051, 0.2102, 0.4204, 0.8408 g/L), SA (0.0138, 0.138, 0.276, 0.552 g/L) ve kontrol.

Bulgular

Yirmi yedi (27) uçucu yağ elde edildi ve en dikkat çekici olanlar şunlardı: α-pinen, limonen, β-pinen, kamfor, timol, kamfen, thujone-trans, thujone-cis, 1,8-sineol, borneol, borneol asetat, karvacrol, α-humulen, karyofilen. JA, α-pinen, limonen, β-pinen, kamfor, timol, kamfen, thujone-trans, thujone-cis, 1,8-sineol, borneol, borneol asetat, karvakrol, α-humulen ve karyofillen birikiminin uyarılmasında daha etkili olmuştur.

Sonuç

JA ve SA esansiyel yağlar üzerinde artan etkilere sahiptir. En iyi uygulamaların JA 0.1051 g/L, JA 0.2102 g/L ve SA 0.138 g/L olduğu bulunmuştur.

Keywords: Elicitors; Manol; Phytochemical; Sage; Thymol

Anahtar Kelimeler: Elisitörler; Manol; Fitokimyasal; Adaçayı; Timol

References

  • 1.

    Baghizadeh A, Hajmohammadrezaei M. Effect of drought stress and its interaction with ascorbate and salicylic acid on Okra (Hibiscus esculents L.) germination and seedling growth. J Stress Physiol Biochemist 2011;7:55–65.Google Scholar

  • 2.

    Wang SY. Methyl jasmonate reduces water stress in strawberry. Plant Growth Reg 1999;18:127–34.CrossrefGoogle Scholar

  • 3.

    Aftab T, Masroor M, Khan A, Idrees M. Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma 2011;248:601–12.CrossrefWeb of SciencePubMedGoogle Scholar

  • 4.

    Babar Ali M, Hahn EJ, Paek KY. Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 2007;12:607–21.Web of ScienceCrossrefPubMedGoogle Scholar

  • 5.

    Gharib FA. Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. Inter J Agr Biol 2007;9:294–301.Google Scholar

  • 6.

    Nazar R, Iqbal N, Syeed S, Khan NA. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 2011;168:807–15.CrossrefWeb of SciencePubMedGoogle Scholar

  • 7.

    Thiem B, Krawczyk A. Enhanced isoflavones accumulation in methyl jasmonate-treated in-vitro cultures of Pueraria lobata Ohwi. Herla Molonica 2010;56:48–56.Google Scholar

  • 8.

    Joseph B, Jini D, Sujatha S. Insight into the role of exogenous salicylic acid on plants grown under salt environment. Asian J Crop Sci 2010;2:226–35.CrossrefGoogle Scholar

  • 9.

    Rahimi AR, Mashayekhi K, Dordipour E. Effect of salicylic acid and mineral nutrition on fruit yield and yield components of coriander (Coriandrum sativum L.). J Agri Sci Nat Res 2009;16:149–56.Google Scholar

  • 10.

    Coste A, Laurian V, Halmagyi A, Coldea G. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult 2011;106:279–88.Web of ScienceCrossrefGoogle Scholar

  • 11.

    Shabani L, Ehsanpour AA, Asghari G, Emami J. Glycyrrhizin production by in-vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russian J Plant Physiol 2009;56:621–6.CrossrefWeb of ScienceGoogle Scholar

  • 12.

    Bayat H, Alirezaie M, Neamati H. Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L.) under salinity stress. J Stress Physiol Biochemist 2012;8:258–67.Google Scholar

  • 13.

    Kim SK, Kim JT, Jang SW, Lee SC. Exogenous effect of gibberellins and jasmonate on tuber enlargement of Dioscorea opposita. Agro Res 2005;3:39–44.Google Scholar

  • 14.

    Gunes A, Inal A, Alpaslan M. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch Agro Soil Sci 2005;51:687–95.CrossrefGoogle Scholar

  • 15.

    Mendoza AB, Godina FR, Torres VR, Rodriguez HR. Chilly seed treatment with salicylic and sulfosalicylic acid midifies seedling epidermal anatomy and cold stress tolerance. Crop Res 2002;24:19–25.Google Scholar

  • 16.

    Mardani H, Bayat H, Saeidnejad AH, Rezaie E. Assessment of salicylic acid impacts on seedling characteristic of cucumber (Cucumis sativus L.) under water stress. Not Sci Biol 2012;4:112–5.CrossrefGoogle Scholar

  • 17.

    EL Tayeb MA, EL Enany AE, Ahmed NL. Salicylic acid alleviates the copper toxicity in sunflower seedlings. Inter J Bot 2006;2:380–7.CrossrefGoogle Scholar

  • 18.

    Van Breusegem F, Vraneva E, Dat JT. The role of active oxygen species in plant signal transduction. Plant Sci 2001;161:405–14.CrossrefGoogle Scholar

  • 19.

    Spollansky TC, Alvarez SP, Giulietti AM. Effect of jasmonic acid and aluminum on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Elect J Biotechnol 2000;3:72–5.Google Scholar

  • 20.

    Walker TS, Bais HP, Vivanco JM. Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemist 2002;60:289–93.CrossrefGoogle Scholar

  • 21.

    Adams RP. Identification of essential oil components by gas chromatography/mass spectroscopy. Carol Stream, USA: Allured Publishing Corp., 2001.Google Scholar

  • 22.

    Canakci S. Effect of salicylic acid on fresh weight change, chlorophyll and protein amount of radish (Raphanus sativus L.) seedlings. J Biol Sci 2008;8:431–5.CrossrefGoogle Scholar

  • 23.

    Meher HC, Singh GH. Salicylic acid-induced glutathione status in tomato crop and resistance to root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood. J Xenobiotics 2011;1:22–8.Google Scholar

  • 24.

    Dong J, Wan G, Liang Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotech 2010;148:99–104.CrossrefGoogle Scholar

  • 25.

    Esfeiny Farahani M, Paknejad F, Bakhteyari Moghadam M. The effect of salicylic acid in variuos application on yield and morphological characters of Caraway (Carum carvi). Iranian J Crop Eco Physiol 2011;3:188–95.Google Scholar

  • 26.

    Galal A. Improving effects of salicylic acid on the multipurpose tree Ziziphus spina-christi (L.) willd tissue culture. Am J Plant Sci 2012;3:947–52.CrossrefGoogle Scholar

  • 27.

    Shakeel S, Mansoor S. Pretreatment effect of salicylic acid on protein and hydrolytic enzymes in salt stressed Mung bean seedlings. Asian J Agr Sci 2012;4:122–5.Google Scholar

  • 28.

    Yu Ye K, Yastreb TO, Karpets YV, Miroshnichenko NK. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L. J Stress Physiol Biochemist 2011;7:154–63.Google Scholar

  • 29.

    Khan NA, Syeed SH, Iqbal N. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mung bean and alleviates adverse effects of salinity stress. Inter J Plant Biol 2010;1:1–8.CrossrefGoogle Scholar

  • 30.

    Kumar SP, Varun Kumar C, Bandana B. Effects of salicylic acid on seedling growth and nitrogen metabolism in cucumber (Cucumis sativus L.). J Stress Physiol Biochemist 2010;6:102–13.Google Scholar

  • 31.

    Gadzovska S, Maury SP, Hage D. Jasmonic acid elicitation of Hypericum perforatum L cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tissue Organ Cult 2007;89:1–13.Web of ScienceCrossrefGoogle Scholar

  • 32.

    Xiao Y, Gao SH, Di P, Zhang L. Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physical Plant 2009;137:1–9.CrossrefGoogle Scholar

  • 33.

    Shohael AM, Murthy EJ, Paek KY. Methyl jasmonate induced overproduction of eleutherosides in somatic embryos of Eleutherococcus senticosus cultured in bioreactors. Elect J Biotech 2007;10:633–7.Google Scholar

  • 34.

    Sheteawi SA. Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. Inter J Agr Biol 2007;9:473–8.Google Scholar

  • 35.

    Sorial ME, El-Gamal SM, Gendy AA. Response of sweet basil to Jasmonic acid application in relation to different water supplies. Bioscience Res 2010;7:39–47.Google Scholar

  • 36.

    Khavarinezhad RA, Asadi, A. The effect of salicylic acid on some of the secondary metabolites (Saponins and Anthocynins) and induction of antimicrobial resistance in Bellis Perennis L. Iran J Med Aroma Plant 2006;21:553–86.Google Scholar

  • 37.

    Mady MA. Effect of foliar application with salicylic acid and vitamin E on growth and productivity of tomato (Lycopersicon esculentum). Plant J Agr Sci Mansoura Univ 2009;34:6735–46.Google Scholar

  • 38.

    Senaratn T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (Asprin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Reg 2000;30:157–61.CrossrefGoogle Scholar

  • 39.

    Shahba Z, Baghizadeh A, Yosefi M. The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) germination, growth and photosynthetic pigment under salinity stress (NaCl). J Stress Physiol Biochemist 2010;6:4–16.Google Scholar

  • 40.

    Kachroo A, Kachroo P. Salicylic acid-jasmonic acid and ethylene mediated regulation of plant defense signaling. Gen Eng 2007;28:55–83.Google Scholar

About the article

Received: 2017-07-07

Accepted: 2017-10-24

Published Online: 2018-03-14


Conflict of interest statement: There is no conflict of interest.


Citation Information: Turkish Journal of Biochemistry, Volume 43, Issue 4, Pages 417–424, ISSN (Online) 1303-829X, DOI: https://doi.org/10.1515/tjb-2017-0183.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in