Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 43, Issue 4

Issues

Antioxidant and antimicrobial activities of four Astragalus species growing wild in Turkey

Türkiye’de doğal yayılış gösteren dört Astragalus türünün antioksidan ve antimikrobiyal aktiviteleri

Sevil AlbayrakORCID iD: http://orcid.org/0000-0002-0253-3746 / Onur Kaya
Published Online: 2018-03-14 | DOI: https://doi.org/10.1515/tjb-2017-0241

Abstract

Objective

The objective of the present study was to investigate the phenolic compositions, antioxidant, antimicrobial and cytotoxic activities of four Astragalus species, two of which are endemic to Turkish flora.

Methods

The total phenolic and flavonoid contents of methanol extracts obtained from four Astragalus species were detected using Folin-Ciocalteu and aluminum chloride colorimetric assays. Their phenolic compositions were identified by Liquid chromatography–mass spectrometry (LC-MS). The antioxidant activity was assayed with phosphomolybdenum, 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), hydrogen peroxide scavenging, β-carotene bleaching activity, ferric-ion reducing power (FRAP) and cupric ions (Cu2+) reducing antioxidant capacity (CUPRAC) methods. Antimicrobial activities of the extracts were studied by agar well-diffusion assay. The cytotoxic effects of the extracts on MCF-7 (human breast cancer cell lines) were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) method.

Results

The extracts exerted moderate antioxidant and reducing activity with low phenolic contents. The main component in the extracts was determined as ferulic acid. The extracts demonstrated no antibacterial activity except P. aeruginosa. A. talasseus showed the highest cytotoxic activity on MCF-7 during 48 h.

Conclusion

It is believed that the results of this study will contribute to research recently increasing for the use of natural antioxidant and antimicrobial compounds in many industrial fields such as food, pharmacy and medicine.

Özet

Amaç

Bu çalışmanın amacı Türkiye florasına ait, 2’si endemik olmak üzere dört Astragalus türünün fenolik madde içeriği, antioksidan, antimikrobiyal ve sitotoksik aktivitelerini araştırmaktır.

Yöntem

Dört farklı Astragalus türünden elde edilen metanollü ekstrelerin toplam fenolik ve flavonoid madde miktarları Folin-Ciocalteu ve alüminyum klorid yöntemleri kullanılarak belirlenmiştir. Ekstrelerin fenolik bileşenleri Sıvı Kromatografisi- Kütle Spektrometresi kullanılarak belirlenmiştir. Antioksidan aktivite fosfomolibdenyum, 2,2-difenil-1-pikrilhidrazil radikal süpürücü (DPPH), hidrojen peroksit süpürücü, β-karoten beyazlatma aktivitesi, demir iyon indirgeyici güç (FRAP), indirgeyici güç ve bakır iyon (Cu2+) indirgeyici antioksidan kapasite (CUPRAC) yöntemleri kullanılarak belirlenmiştir. Ekstrelerin antimikrobiyal aktiviteleri agar difüzyon yöntemi ile çalışılmıştır. Sitotoksik aktiviteleri ise MTT yöntemi ile MCF-7 (insan meme kanser hücre hattı) kullanılarak belirlenmiştir.

Bulgular

Ekstreler düşük fenolik içerikleri ile orta seviyede antioksidan ve indirgeyici aktivite göstermişlerdir. Ekstrelerdeki ana bileşen ferulik asittir. Ekstreler P. aeruginosa hariç antibakteriyal aktivite göstermemiştir. A. talasseus MCF-7 üzerinde 48 saatlik uygulamada en yüksek sitotoksik aktiviteyi göstermiştir.

Sonuç

Sonuç olarak, çalışma sonuçlarının gıda, eczacılık ve tıp gibi birçok endüstriyel alanda doğal antioksidan ve antimikrobiyal bileşiklerin kullanımına yönelik son zamanlarda artan araştırmalara yardımcı olacağına inanılmaktadır.

Keywords: Astragalus; Antimicrobial activity; CUPRAC; Phenolic; FRAP

Anahtar kelimeler: Astragalus; Antimikrobiyal Aktivite; CUPRAC; Fenolik; FRAP

References

  • 1.

    Block G, Patterson B, Subar A. Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer Int J 1992;18:1–29.CrossrefGoogle Scholar

  • 2.

    Ness AR, Powles JW. Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol 1997;26:1–13.PubMedCrossrefGoogle Scholar

  • 3.

    Karadeniz F, Burdurlu HS, Koca N, Soyer Y. Antioxidant activity of selected fruits and vegetables grown in Turkey. Turk J Agric For 2005;29:297–303.Google Scholar

  • 4.

    Dung NT, Kim JM, Kang SC. Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds. Food Chem Toxicol 2008;46:3632–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 5.

    Kumaran A, Karunakaran RJ. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT Food Sci Technol 2007;40:344–52.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Hossain MA, Rahman SM. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res Int 2011;44:672–6.Web of ScienceCrossrefGoogle Scholar

  • 7.

    Davis PH. Flora of Turkey and The East Aegean Islands. Edinburgh: Edinburgh University Press, 1970:3, 49–168.Google Scholar

  • 8.

    Güner A, Özhatay N, Ekim T, Başer KH. Flora of Turkey and The East Aegean Islands, vol 11. Edinburgh: Edinburgh University Press, 2000:79–88.Google Scholar

  • 9.

    Ekici M, Aytaç Z, Akan M, Pınar M. A new species Astragalus L. (section: Onobrychoidei DC.: Fabaceae) from Turkey. Bot J Linn Soc 2008;157:741–7.Web of ScienceCrossrefGoogle Scholar

  • 10.

    Calış I, Dönmez AA, Perrone A, Pizza C, Piacente S. Cycloartane glycosides from Astragalus campylosema Boiss. ssp. campylosema. Phytochemistry 2008;69:2634–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 11.

    Gülcemal D, Alankuş-Calışkan O, Perrone A, Ozgokçe F, Piacente S, Bedir E. Cycloartane glycosides from Astragalus aureus. Phytochemistry 2011;72:761–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 12.

    Gülcemal D, Masullo M, Bedir E, Festa M, Karayıldırım T, Alankuş-Çalışkan Ö, et al. Triterpene glycosides from Astragalus angustifolius. Planta Med 2012;78:720–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 13.

    Polat E, Alankuş-Çalıskan Ö, Perrone A, Piacente S, Bedir E. Cycloartanetype glycosides from Astragalus amblolepis. Phytochemistry 2009;70:628–34.PubMedCrossrefGoogle Scholar

  • 14.

    Polat E, Bedir E, Perrone A, Piacente S, Alankuş-Çalışkan Ö. Triterpenoid saponins from Astragalus wiedemannianus. Phytochemistry 2010;71:658–62.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 15.

    Jun MY, Kim EH, Lim JJ, Kim SH, Kim SH, Lim JD, et al. Variation of phenolic compounds contents in cultivated Astragalus membranaceus. Korean J Med Crop Sci 2012;20:447–53.CrossrefGoogle Scholar

  • 16.

    Benchadi W, Haba H, Lavaud C, Harakat D, Benkhaled M. Secondary metabolites of Astragalus cruciatus Link. and their chemotaxonomic significance. Rec Nat Prod 2013;7:105–13.Google Scholar

  • 17.

    Lim DH, Choi DB, Choi OY, Cho KA, Kim R, Choi HS, et al. Effect of Astragalus sinicus L. seed extract on antioxidant activity. J Ind Eng Chem 2011;17:510–6.Web of ScienceCrossrefGoogle Scholar

  • 18.

    Chen J, Li Y, Yang LQ, Li YZ, Nan ZB, Gao K. Biological activities of flavonoids from pathogenic-infected Astragalus adsurgens. Food Chem 2012;131:546–51.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Teyeb H, Zanina N, Neffati M, Douki W, Najjar MF. Cytotoxic and antibacterial activities of leaf extracts of Astragalus gombiformis Pomel (Fabaceae) growing wild in Tunisia. Turk J Biol 2012;36:53–8.Web of ScienceGoogle Scholar

  • 20.

    Bedir E, Pugh N, Calıs I, Pasco DS, Khan IA. Immunostimulatory effects of cycloartane-type triterpene glycosides from Astragalus species. Biol Pharm Bull 2000;23:834–7.CrossrefPubMedGoogle Scholar

  • 21.

    Uysal İ. Observations on the morphology, anatomy and ecology of endemic species Astragalus trojanus Stev. Erciyes Univ J Inst Sci Technol 1997;13:54–66.Google Scholar

  • 22.

    Albayrak S, Aksoy A, Sagdic O, Hamzaoglu E. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chem 2010;119:114–22.CrossrefWeb of ScienceGoogle Scholar

  • 23.

    Singleton VL, Rossi JA Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965;16:144–58.Google Scholar

  • 24.

    Pourmorad F, Hosseinimehr SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol 2006;5:1142–5.Google Scholar

  • 25.

    Prieto P, Pineda M, Aguilar M. Spectrofotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 1999;269:337–41.CrossrefGoogle Scholar

  • 26.

    Lee SK, Mbwambo ZH, Chung HS, Luyengi L, Games EJ, Metha RG. Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen 1998;1:35–46.PubMedGoogle Scholar

  • 27.

    Cao L, Si JY, Liu Y, Sun H, Jin W, Li Z, et al. Essential oil composition, antimicrobial and antioxidant properties of Moslachinensis Maxim. Food Chem 2009;115:801–5.CrossrefGoogle Scholar

  • 28.

    Apak R, Güçlü K, Özyurek M, Karademir SE, Ercağ E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int J Food Sci Nutr 2006;57:292–304.PubMedCrossrefGoogle Scholar

  • 29.

    Tuberoso CI, Montoro P, Piacente S, Corona G, Deiana M, Dessi MA, et al. Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All. J Pharm Biomed Anal 2009;50:440–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 30.

    Peksel A, Arisan-Atac İ, Yanardag R. Evaluation of antioxidant and antiacetylcholinesterase activities of the extracts of Pistacia atlantica desf. Leaves. J Food Biochem 2010;34:451–76.Web of ScienceGoogle Scholar

  • 31.

    Aadil KR, Barapatre A, Sahu S, Jha H, Tiwary BN. Free radical scavenging activity and reducing power of Acacia nilotica wood lignin. Int J Biol Macromol 2014;67:220–7.CrossrefWeb of SciencePubMedGoogle Scholar

  • 32.

    Li M, Xu Y, Yang W, Li J, Xu X, Zhang X, et al. In vitro synergistic anti-oxidant activities of solvent-extracted fractions from Astragalus membranaceus and Glycyrrhiza uralensis. Food Sci Technol 2011;44:1745–51.Web of ScienceGoogle Scholar

  • 33.

    SPSS, SPSS Version 10.0. SPSS Inc, Chicago, Illinois, 2001.Google Scholar

  • 34.

    Zarena AS, Manohar B, Udaya-Sankar K. Optimization of supercritical carbon dioxide extraction of xanthones from mangosteen pericarp by response surface methodology. Food Bioprocess Technol 2012;5:1181–8.Web of ScienceCrossrefGoogle Scholar

  • 35.

    Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R. Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica:3-o-(β-d-glucopyranosyl)-hederagenin. Phytother Res 2006;20:130–4.CrossrefPubMedGoogle Scholar

  • 36.

    Asgarpanah J, Motamed SM, Farzaneh A, Ghanizadeh B, Tomraee S. Antioxidant activity and total phenolic and flavonoid content of Astragalus squarrosus Bunge. Afr J Biotechnol 2011;10:19176–80.Web of ScienceGoogle Scholar

  • 37.

    Adıgüzel A, Sökmen M, Özkan H, Ağar G, Güllüce M, Şahin F. In vitro antimicrobial and antioxidant activities of methanol and hexane extract of Astragalus species growing in the eastern Anatolia region of Turkey. Turk J Biol 2009;33:65–71.Google Scholar

  • 38.

    Pistelli L, Bertoli A, Leporia E, Morellia I, Panizzi L. Antimicrobial and antifungal activity of crude extracts and isolated saponins from Astragalus errucosus. Fitoterapia 2002;73:336–9.CrossrefPubMedGoogle Scholar

  • 39.

    Türker AU, Yıldırım AB. Evaluation of antibacterial and antitumor activities of some Turkish endemic plants. Trop J Pharm Res 2013;12:1003–10.Web of ScienceGoogle Scholar

  • 40.

    Albayrak S, Aksoy A, Albayrak S, Sagdıc O. In vitro antioxidant and antimicrobial activity of some Lamiaceae species. Iran J Sci Technol 2013;A1:1–9.Google Scholar

  • 41.

    Ionkova I, Momekov G, Proksch P. Effects of cycloartane saponins from hairy roots of Astragalus membranaceus Bge., on human tumor cell targets. Fitoterapia 2010;81:447–51.CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Received: 2017-09-07

Accepted: 2017-12-05

Published Online: 2018-03-14


Conflicts of interest statement: The authors have no conflict of interest.


Citation Information: Turkish Journal of Biochemistry, Volume 43, Issue 4, Pages 425–434, ISSN (Online) 1303-829X, DOI: https://doi.org/10.1515/tjb-2017-0241.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in