Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2017: 0.248
5-year IMPACT FACTOR: 0.356

CiteScore 2017: 0.25

SCImago Journal Rank (SJR) 2017: 0.149
Source Normalized Impact per Paper (SNIP) 2017: 0.206

Online
ISSN
1303-829X
See all formats and pricing
More options …

Major biological activities and protein profiles of skin secretions of Lissotriton vulgaris and Triturus ivanbureschi

Lissotriton vulgaris ve Triturus ivanbureschi deri salgılarının başlıca biyolojik aktiviteleri ve protein profilleri

Mert Karış
  • Ege University, Faculty of Science, Department of Biology, Zoology Section, Bornova, Izmir, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Doğancan Şener
  • Ege University, Faculty of Science, Department of Biology, Zoology Section, Bornova, Izmir, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hüsniye Tansel Yalçın
  • Ege University, Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Bornova, Izmir, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ayşe Nalbantsoy
  • Corresponding author
  • Ege University, Faculty of Engineering, Department of Bioengineering, 35100 Bornova, Izmir, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bayram GöçmenORCID iD: http://orcid.org/0000-0003-0526-872X
Published Online: 2018-03-17 | DOI: https://doi.org/10.1515/tjb-2017-0306

Abstract

Objective

The aim of this study was to determine the total protein amounts, protein profiles, in vitro cytotoxicities, antimicrobial activities and hemolytic effects of skin secretions of the Lissotriton vulgaris and Triturus ivanbureschi.

Methods

Skin secretions were obtained, clarified, supernatants snap-frozen then lyophilized. Total protein amounts were determined by BCA assay kit. Protein profiles were revealed by the SDS-PAGE. The cytotoxicity and antimicrobial activity were determined by using MTT assay and minimum inhibitory concentration (MIC) method. Hemolytic effects were measured on rabbit red blood cells.

Results

Lissotriton vulgaris and T. ivanbureschi skin secretions have totally 18 and 20 protein fractions. IC50 values were detected between 1.40 and 40.28 μg/mL. The MIC results were found between 7.8 and 250 μg/mL. Lissotriton vulgaris skin secretion showed low hemolytic effect while T. ivanbureschi skin secretion showed high hemolytic effect.

Conclusion

This study is the first report showing the potential of L. vulgaris and T. ivanbureschi skin secretions for cytotoxicity, antimicrobial and hemolytic activity as an alternative therapeutic approach for traditional uses. Further studies need to focus on purification of the active components from these skin secretions and mode of action on cancer cell lines and microorganisms as anti-agents.

Özet

Amaç

Bu çalışmanın amacı, Lissotriton vulgaris ve Triturus ivanbureschi deri salgılarının total protein miktarlarını, protein profillerini, in vitro sitotoksisitelerini, antimikrobiyal aktivitelerini ve hemolitik etkilerini belirlemektir.

Metod

Ham deri salgıları, sağıldı, arındırıldı, supernatant kısımlar donduruldu ardından liyofilize edildi. Deri salgılarının total protein miktarları BCA kiti ile belirlendi. Protein profilleri SDS-PAGE ile ortaya koyuldu. Sitotoksik ve antimikrobiyal etkiler MTT testi ve MIC metodu kullanılarak belirlendi. Hemolitik etkiler, tavşan kırmızı kan hücreleri üzerinde hesaplandı.

Bulgular

Lissotriton vulgaris deri salgısında 18, T. ivanbureschi deri salgısında 20 protein fraksiyonu bulunmaktadır. IC50 değerleri 1.40–40.28 μg/mL arasında tespit edildi. MIC sonuçları 7.8–250 μg/mL arasında bulundu. Lissotriton vulgaris deri salgısı tavşan kırmızı kan hücreleri üzerinde düşük hemolitik etki gösterirken, T. ivanbureschi deri salgısı yüksek hemolitik etki gösterdi.

Sonuç

Bu çalışma, L. vulgaris ve T. ivanbureschi deri salgılarının geleneksel kullanımdaki alternatif terapötik potansiyellerini sitotoksisite, antimikrobiyal ve hemolitik aktivite bakımından ortaya koyan ilk rapor niteliğindedir. Gelecek çalışmalarda deri salgılarının anti-ajanlar olarak kullanılabilmesi için içeriğindeki aktif bileşenlerin saptanması, hücre hatları ve mikroorganizmalar üzerindeki etki mekanizmasının belirlenmesine odaklanılmalıdır.

Keywords: Amphibian skin secretion; Cytotoxicity; Antimicrobial activity; Hemolytic activity; Protein profile

Anahtar Kelimeler: Amfibi deri salgısı; Sitotoksisite; Antimikrobiyal aktivite; Hemolitik aktivite; Protein profili

References

  • 1.

    Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015;115:1760–846.CrossrefWeb of SciencePubMedGoogle Scholar

  • 2.

    Conlon JM. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 2011;68:2303–15.Web of ScienceCrossrefPubMedGoogle Scholar

  • 3.

    Nalbantsoy A, Karış M, Yalçın HT, Göçmen B. Biological activities of skin and parotoid gland secretions of bufonid toads (Bufo bufo, Bufo verrucosissimus and Bufotes variabilis) from Turkey. Biomed Pharmacother 2016;80:298–303.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 4.

    Clarke BT. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev 1997;72:365–379.CrossrefGoogle Scholar

  • 5.

    Daly JW. The chemistry of poisons in amphibian skin. Proc Natl Acad Sci 1995;92:9–13.CrossrefGoogle Scholar

  • 6.

    Chen KK, Kovarikova A. Pharmacology and toxicology of toad venom. J Pharm Sci 1967;56:1535–41.PubMedCrossrefGoogle Scholar

  • 7.

    Ogasawara M, Matsubara T, Suzuki H. Screening of natural compounds for inhibitory activity on colon cancer cell migration. Biol Pharm Bull 2001;24:720–3.CrossrefPubMedGoogle Scholar

  • 8.

    Li C, Hashimi SM, Cao S, Qi J, Good D, Duan W, Wei MQ. Chansu inhibits the expression of cortactin in colon cancer cell lines in vitro and in vivo. BMC Complement Altern Med 2015;15:207.Web of ScienceCrossrefPubMedGoogle Scholar

  • 9.

    Zhang LS, Nakaya K, Yoshida T, Kuroiwa Y. Induction by bufalin of differentiation of human leukemia cells HL60, U937, and ML1 toward macrophage/monocyte-like cells and its potent synergistic effect on the differentiation of human leukemia cells in combination with other inducers. Cancer Res 1992;52:4634–41.PubMedGoogle Scholar

  • 10.

    Nogawa T, Kamano Y, Yamashita A, Pettit GR. Isolation and structure of five new cancer cell growth inhibitory bufadienolides from the Chinese traditional drug Ch’an Su. J Nat Prod 2001;64:1148–52.CrossrefPubMedGoogle Scholar

  • 11.

    Cunha Filho GA, Schwartz CA, Resck IS, Murta MM, Lemos SS, Castro MS, et al. Antimicrobial activity of the bufadienolides marinobufagin and telocinobufagin isolated as major components from skin secretion of the toad Bufo rubescens. Toxicon 2005;45:777–82.PubMedCrossrefGoogle Scholar

  • 12.

    Gomes A, Giri B, Saha A, Mishra R, Dasgupta SC, Debnath A, Gomes A. Bioactive molecules from amphibian skin: their biological activities with reference to therapeutic potentials for possible drug development. Indian J Exp Biol 2007;45:579–93.PubMedGoogle Scholar

  • 13.

    Conlon JM, Mechkarska M, Lukic ML, Flatt PR. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 2014;57:67–77.Web of SciencePubMedCrossrefGoogle Scholar

  • 14.

    Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci 1987;84:5449–53.CrossrefGoogle Scholar

  • 15.

    Ohsaki Y, Gazdar AF, Chen HC, Johnson BE. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res 1992;52:3534–8.PubMedGoogle Scholar

  • 16.

    Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol 2006;50:141–7.CrossrefPubMedGoogle Scholar

  • 17.

    Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci 1991;88:3792–6.CrossrefGoogle Scholar

  • 18.

    Daly JW, Spande TF, Garraffo HM. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 2005;68:1556–75.CrossrefPubMedGoogle Scholar

  • 19.

    Guo W, Ao M, Li W, Wang J, Yu L. Major biological activities of the skin secretion of the Chinese giant salamander, Andrias davidianus. Z Naturforsch C 2012;67:86–92.Web of SciencePubMedCrossrefGoogle Scholar

  • 20.

    Cardall BL, Brodie Jr ED, Brodie ED, Hanifin CT. Secretion and regeneration of tetrodotoxin in the rough-skin newt (Taricha granulosa). Toxicon 2004;44:933–8.CrossrefPubMedGoogle Scholar

  • 21.

    Jiang WB, Hakim M, Lei LU, Bo-Wen LI, Shi-Long YA, Yu-Zhu SO, et al. Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus. Zool Res 2015;36:174–7.PubMedGoogle Scholar

  • 22.

    Fredericks LP, Dankert JR. Antibacterial and hemolytic activity of the skin of the terrestrial salamander, Plethodon cinereus. J Exp Zool Part A 2000;287:340–5.CrossrefGoogle Scholar

  • 23.

    Mebs D, Pogoda W. Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamadra terrestris). Toxicon 2005;45:603–6.CrossrefPubMedGoogle Scholar

  • 24.

    Tyler MJ, Stone DJ, Bowie JH. A novel method for the release and collection of dermal, glandular secretions from the skin of frogs. J Pharmacol Toxicol Methods 1992;28:199–200.PubMedCrossrefGoogle Scholar

  • 25.

    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.CrossrefPubMedGoogle Scholar

  • 26.

    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.CrossrefPubMedGoogle Scholar

  • 27.

    CLSI (Clinical and Laboratory Standard Institute). Performance standards; for antimicrobial susceptibility testing, nineteenth informational supplement, 2009; (M100–S19).Google Scholar

  • 28.

    Yang ZG, Suna HX, Fang WH. Haemolytic activities and adjuvant effect of Astragalus membranaceus saponins (AMS) on the immune responses to ovalbumin in mice. Vaccine 2005;23:5196–203.CrossrefPubMedGoogle Scholar

  • 29.

    Sciani JM, de-Sá-Júnior PL, Ferreira AK, Pereira A, Antoniazzi MM, Jared C, et al. Cytotoxic and antiproliferative effects of crude amphibian skin secretions on breast tumor cells. Biomed Prev Nutr 2013;3:10–8.CrossrefGoogle Scholar

  • 30.

    Pukala TL, Bowie JH, Maselli VM, Musgrave IF, Tyler MJ. Host-defence peptides from the glandular secretions of amphibians: structure and activity. Nat Prod Rep 2006;23:368–93.CrossrefPubMedGoogle Scholar

  • 31.

    Yotsu-Yamashita M, Mebs D. The levels of tetrodotoxin and its analogue 6-epitetrodotoxin in the red-spotted newt, Notophthalmus viridescens. Toxicon 2001;39:1261–3.PubMedCrossrefGoogle Scholar

  • 32.

    Habermehl G. Venoms of amphibia. In: Florkin M, Scheer BT, editors. Chemical zoology. Vol. 9. New York, NY, USA: Academic Press, 1974:161–83.Google Scholar

  • 33.

    Preusser HJ, Habermehl G, Sablofski M, Schmall-Haury D. Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. Toxicon 1975;13:285–8.CrossrefPubMedGoogle Scholar

  • 34.

    Teranishi H, Muneoka Y, Takao T, Shimonishi Y, Kojima M. Isolation and characterization of four VIP-related peptides from red-bellied newt, Cynops pyrrhogaster. Regul Peptides 2004;123:173–9.CrossrefGoogle Scholar

  • 35.

    Zare-Zardini H, Ebrahimi L, Ejtehadi MM, Hashemi A, Azam AG, Atefi A, et al. Purification and characterization of one novel cationic antimicrobial peptide from skin secretion of Bufo kavirensis. Turk J Biochem 2013;38:416–24.Web of ScienceCrossrefGoogle Scholar

  • 36.

    van Zoggel H, Hamma-Kourbali Y, Galanth C, Ladram A, Nicolas P, Courty J, et al. Antitumor and angiostatic peptides from frog skin secretions. Amino Acids 2012;42:385–95.Web of SciencePubMedCrossrefGoogle Scholar

  • 37.

    Cunha Filho GA, Resck IS, Cavalcanti BC, Pessoa CÓ, Moraes MO, Ferreira JR, et al. Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella schneideri parotoid gland secretion. Toxicon 2010;56:339–48.PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-11-10

Accepted: 2018-01-23

Published Online: 2018-03-17


Conflict of interest statement: The authors have no conflict of interest.

Ethical considerations: MK, HTY, AN and BG have ethical permission from Ege University Animal Experiments Ethics Committee (2014-002) for skin secretion milking procedures. Also, they have special permission for the fieldworks from the Republic of Turkey, Ministry of Forestry and Water Affairs, Directorate of Nature Conservation and National Parks (2014-51946) to collect newts for secretion sampling.


Citation Information: Turkish Journal of Biochemistry, Volume 43, Issue 6, Pages 605–612, ISSN (Online) 1303-829X, DOI: https://doi.org/10.1515/tjb-2017-0306.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in