Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 44, Issue 5

Issues

Association between serum vitamin D level and liver MRI T2 star in patients with β-thalassemia major

β-Talasemi Major Hastalarında Karaciğer MRI T2 skoru ile Serum Vitamin D düzeyleri arasındaki İlişki

Erdal Kurtoğlu / Ayşegül Uğur KurtoğluORCID iD: https://orcid.org/0000-0002-6033-4139 / Belkıs Koçtekin / Sevcan Uğur / Selen Bozkurt
  • Department of Biostatistics and Medical Informatics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-11 | DOI: https://doi.org/10.1515/tjb-2018-0120

Abstract

Background

Iron overloaded Beta Thalassemia major (β-TM) patients have a high risk of liver problems. In recent years studies revealed that vitamin D level is decreased in chronic liver diseases. The present study was designed to find the association between the serum vitamin D levels and the liver iron deposition in patients with β-TM.

Materials and methods

A total of 101 patients with a diagnosis of β-TM were included into this study. The patients were divided into four groups according to liver T2* MRI scores (group 1: normal, group 2: mild iron load, group 3: moderate iron load and group 4: severe iron load). Serum vitamin D was measured by chemiluminescence immunoassay method.

Results

The vitamin D level was median 14 (4–91) ng/mL. There was a positive correlation between vitamin D levels and liver T2* MRI scores (r = 0.31, p < 0.05). There is a significant difference between groups 1 and 4 for vitamin D level (p < 0.05). Vitamin D deficiency (<20 ng/mL) was observed 71% in group 1, 67% in group 2, 80% in group 3 and 100% in group 4.

Conclusions

Vitamin D monitorization and supplementation should be routine in β-TM patients to prevent both skeletal and non-skeletal complications.

Öz

Amaç

Beta talasemi major (β-TM) tüm dünyada sık görülen genetik bir hastalıktır. Aşırı demir yüklenmesi olan β-TM hastalarında karaciğer ve kalp problemleri sık görülmekte ve yaşam beklentisi azalmaktadır. Son yıllarda yapılan çalışmalarda kronik karaciğer hastalıkları ile düşük vitamin D düzeyleri arasındaki ilişki vurgulanmaktadır. Bu çalışmamızda β-TM hastalarında karaciğer demir birikimi ile vitamin D düzeyleri arasındaki ilişkiyi araştırdık.

Gereç ve Yöntem

Çalışmaya 101 β-TM tanılı hasta dahil edildi. Hastalar karaciğer T2* MRI skoruna göre dört gruba ayrıldı. (Grup 1: normal, grup 2: hafif düzeyde demir birikimi, grup 3: orta düzeyde demir birikimi, grup 4: hafif düzeyde demir birikimi). Serum vitamin D düzeyleri kemiluminesans immunoassay yöntemi ile ölçüldü.

Bulgular

Ortalama T2* skoru 5.86 ± 7.68 ms idi. Vitamin D düzeyleri ortanca 14 (4–91) ng/mL olarak ölçüldü. Vitamin D düzeyleri ile karaciğer T2* MRI skoru arasında pozitif korelasyon olduğu tespit edildi (r = 0,31, p < 0,05). Grup 1 ve 4 arasında vitamin D düzeylerinin anlamlı düzeyde farklı olduğu bulundu (p < 0,05). Vitamin D eksikliği (<20 ng/mL)’nin; grup 1’de %71, grup 2’de %67, grup 3’de %80 ve grup 4’de %100 olduğu gözlendi.

Sonuç

β-TM hastalarında ilerleyici karaciğer hastalığı ile birlikte vitamin D eksikliğinin sıklığı artmaktadır. β-TM hastalarında iskelet sistemi ve diğer komplikasyonları önlemek için vitamin D düzeyinin takibi ve eksikliğin tamamlanması gereklidir.

Keywords: Vitamin D; Liver T2* MRI scores; Beta- thalassemia major

Anahtar Sözcükler: Vitamin D; karaciğer MRI T2* skoru; Beta-talasemi major

References

  • 1.

    Chen EQ, Shi Y, Tang H. New insight of vitamin D in chronic liver diseases. Hepatobiliary Pancreat Dis Int 2014;13:580–5.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 2.

    Stokes CS, Lammert F. Vitamin D supplementation: less controversy, more guidance needed. F1000Res 2016; 5:pii: F1000.Google Scholar

  • 3.

    Trummer C, Pandis M, Verheyen N, Grübler MR, Gaksch M, Obermayer-Pietsch B, et al. Beneficial effects of UV-radiation: vitamin D and beyond. Int J Environ Res Public Health 2016;13:1028.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Tagliabue E, Raimondi S, Gandini S. Meta-analysis of vitamin D-binding protein and cancer risk. Cancer Epidemiol Biomarkers Prev 2015;24:1758–65.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 5.

    Rana S, Morya RK, Malik A, Bhadada SK, Sachdeva N, Sharma G. A relationship between vitamin D, parathyroid hormone, calcium levels and lactose intolerance in type 2 diabetic patients and healthy subjects. Clin Chim Acta 2016;462:174–7.Web of SciencePubMedCrossrefGoogle Scholar

  • 6.

    Ginzburg Y, Rivella S. β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 2011;118:4321–30.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 7.

    Bahnasawy SM, El Wakeel LM, El Beblawy N, El-Hamamsy M. Clinical pharmacist-provided services in iron overloaded β-thalassemia major children; a new insight to patient care. Basic Clin Pharmacol Toxicol 2017;120:354–9.CrossrefPubMedGoogle Scholar

  • 8.

    Eghbali A, Taherahmadi H, Shahbazi M, Bagheri B, Ebrahimi L. Association between serum ferritin level, cardiac and hepatic T2-star MRI in patients with major β-thalassemia. Iran J Ped Hematol Oncol 2014;4:17–21.PubMedGoogle Scholar

  • 9.

    Ren Y, Liu M, Zhao J, Ren F, Chen Y, Li JF, et al. Serum vitamin D₃ does not correlate with liver fibrosis in chronic hepatitis C. World J Gastroenterol 2015;21:11152–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 10.

    Hoan NX, Khuyen N, Binh MT, Giang DP, Van Tong H, Hoan PQ, et al. Association of vitamin D deficiency with hepatitis B virus – related liver diseases. BMC Infect Dis 2016;16:507.CrossrefWeb of SciencePubMedGoogle Scholar

  • 11.

    Casale M, Citarella S, Filosa A, De Michele E, Palmieri F, Ragozzino A, et al. Endocrine function and bone disease during long-term chelation therapy with deferasirox in patients with β-thalassemia major. Am J Hematol 2014;89:1102–6.CrossrefWeb of SciencePubMedGoogle Scholar

  • 12.

    Altincik A, Akin M. Prevalence of endocrinopathies in Turkish children with β-thalassemia major: a single-center study. J Pediatr Hematol Oncol 2016;38:389–93.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 13.

    Ambarwati L, Rahayuningsih SE, Setiabudiawan B. Association between vitamin D levels and left ventricular function and NT-proBNP levels among thalassemia major children with iron overload. Ann Pediatr Cardiol 2016;9:126–31.CrossrefPubMedGoogle Scholar

  • 14.

    Giusti A, Pinto V, Forni GL, Pilotto A. Management of β-thalassemia-associated osteoporosis. Ann N Y Acad Sci 2016;1368:73–81CrossrefPubMedGoogle Scholar

  • 15.

    Dessì C, Leoni G, Moi P, Danjou F, Follesa I, Foschini ML, et al. Thalassemia major between liver and heart: where we are now. Blood Cells Mol Dis 2015;55:82–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 16.

    Konstantakis C, Tselekouni P, Kalafateli M, Triantos C. Vitamin D deficiency in patients with liver cirrhosis. Ann Gastroenterol 2016;29:297–306.Web of SciencePubMedGoogle Scholar

  • 17.

    Arteh J, Narra S, Nair S. Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci 2010;55:2624–28.Web of ScienceCrossrefPubMedGoogle Scholar

  • 18.

    Brancaleoni V, Di Pierro E, Motta I, Cappellini MD. Laboratory diagnosis of thalassemia. Int J Lab Hematol 2016;38:32–40.CrossrefWeb of SciencePubMedGoogle Scholar

  • 19.

    De Sanctis V, Elsedfy H, Soliman AT, Elhakim IZ, Soliman NA, Elalaily R, et al. Endocrine profile of β-thalassemia major patients followed from childhood to advanced adulthood in a tertiary care center. Indian J Endocrinol Metab 2016;20:451–9.CrossrefGoogle Scholar

  • 20.

    Gomber S, Jain P, Sharma S, Narang M. Comparative efficacy and safety of oral iron chelators and their novel combination in children with thalassemia. Indian Pediatr 2016;53:207–10.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 21.

    Soliman A, De Sanctis V, Yassin M. Vitamin D status in thalassemia major: an update. Mediterr J Hematol Infect Dis 2013;5:2013057.CrossrefGoogle Scholar

  • 22.

    Sultan S, Irfan SM, Ahmed SI. Biochemical markers of bone turnover in patients with β-thalassemia major: a single center study from southern Pakistan. Adv Hematol 2016;2016:5437609.PubMedGoogle Scholar

  • 23.

    Fahim FM, Saad K, Askar EA, Eldin EN, Thabet AF. Growth parameters and vitamin D status in children with thalassemia major in upper Egypt. Int J Hematol Oncol Stem Cell Res 2013;7:10–4.PubMedGoogle Scholar

  • 24.

    Pirinççioğlu AG, Akpolat V, Köksal O, Haspolat K, Söker M. Bone mineral density in children with β-thalassemia major in Diyarbakir. Bone 2011;49:819–23.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 25.

    Cagirci G, Kucukseymen S, Yuksel IO, Bayar N, Koklu E, Guven R, et al. The relationship between vitamin D and coronary artery ectasia in subjects with a normal C-reactive protein level. Korean Circ J. 2017;47:231–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 26.

    Gill P, Kalia S. Assessment of the feasibility of using sunlight exposure to obtain the recommended level of vitamin D in Canada. CMAJ Open 2015;3:258–63.Google Scholar

  • 27.

    Stalgis-Bilinski KL, Boyages J, Salisbury EL, Dunstan CR, Henderson SI, Talbot PL. Burning daylight: balancing vitamin D requirements with sensible sun exposure. Med J Aust 2011;194:345–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 28.

    Al-Daghri NM, Al-Saleh Y, Khan N, Sabico S, Aljohani N, Alfawaz H, et al. Sun exposure, skin color and vitamin D status in Arab children and adults. J Steroid Biochem Mol Biol 2016;164:235–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 29.

    Youssry I, Mohsen NA, Shaker OG, El-Hennawy A, Fawzy R, Abu-Zeid NM, et al. Skin iron concentration: a simple, highly sensitive method for iron stores evaluation in thalassemia patients. Hemoglobin 2007;3:357–65.Web of ScienceGoogle Scholar

  • 30.

    Korsak J. Post-transfusion iron overload. Pol Merkur Lekarski 2011;30:177–80.Google Scholar

  • 31.

    Prakash A, Aggarwal R. Thalassemia major in adults: short stature, hyperpigmentation, inadequate chelation, and transfusion-transmitted infections are key features. N Am J Med Sci 2012;4:141–4.PubMedCrossrefGoogle Scholar

About the article

Received: 2018-03-29

Accepted: 2018-11-27

Published Online: 2019-06-11

Published in Print: 2019-10-25


Citation Information: Turkish Journal of Biochemistry, Volume 44, Issue 5, Pages 594–598, ISSN (Online) 1303-829X, DOI: https://doi.org/10.1515/tjb-2018-0120.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in