Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi

6 Issues per year


IMPACT FACTOR 2017: 0.248
5-year IMPACT FACTOR: 0.356

CiteScore 2017: 0.25

SCImago Journal Rank (SJR) 2017: 0.149
Source Normalized Impact per Paper (SNIP) 2017: 0.206

Online
ISSN
1303-829X
See all formats and pricing
More options …

Effects of calcium hydroxide and N-acetylcysteine on MMP-2, MMP-9, TIMP-1 and TIMP-2 in LPS-stimulated macrophage cell lines

Kalsiyum hidroksit ve N-asetilsistein’ in LPS ile stimüle edilmiş makrofaj hücre hatlarındaki MMP-2, MMP-9, TIMP-1 ve TIMP-2 üzerine etkileri

Eda Ezgi Aslantaş / Yasemin Aksoy / Yeliz Zülfiye Akkaya Ulum / Deniz Ceyhan
  • Hacettepe Universitesi Tip Fakultesi, Medical Biochemistry Ankara, Ankara, Turkey
  • Namik Kemal Universitesi, Department of Chemistry, Faculty of Arts and Sciences Degirmenalti Campus, Tekirdag 59030, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Banu Peynircioglu / Hatice Doğan Buzoğlu
Published Online: 2017-04-19 | DOI: https://doi.org/10.1515/tjb-2017-0046

Abstract

Aim:

This study was evaluated the effects of N-acetylcysteine (NAC) and calcium hydroxide (Ca(OH)2) on the expression levels of matrix metalloproteinase -2, -9 (MMP-2, -9) and tissue inhibitor metalloproteinase -1, -2 (TIMP-1, -2) in lipopolysaccharide (LPS)-stimulated human macrophages.

Methods:

Human monocyte precursor cells (THP-1) were differentiated into macrophage-adherent cells and were stimulated with LPS for 24 h. Then individually incubated with NAC or Ca(OH)2 for 24, 48 and 72 h. Following incubation, protein expression and mRNA levels of MMP-2, -9 and TIMP-1, -2 were evaluated using enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Data were statistically analysed using two-way ANOVA, to followed by Bonferroni test at α=0.05.

Results:

NAC significantly decreased mRNA expression and protein levels of MMP-9, while Ca(OH)2 decreased mRNA expression alone at 24 h. NAC and Ca(OH)2 decreased mRNA expression of MMP-2 at 24 h, while NAC increased this expression at 48 h. Although NAC and Ca(OH)2 decreased the mRNA expression of TIMP-1, -2 at 24 h, only NAC increased mRNA expression of TIMP-1 at 48 h.

Conclusion:

At the early stages of inflammation, NAC and Ca(OH)2 have anti-inflammatory effects on macrophages.

Özet

Amaç:

Bu çalışmanın amacı lipopolisakkaritle (LPS) stimule edilmiş insan makrofaj hücrelerinde N-asetilsistein (NAC) ve kalsiyum hidroksit’in (Ca(OH)2), matriks metalloproteinaz-2 ve -9 (MMP-2, -9) ve doku inhibitor metalloproteinaz-1 ve -2 (TIMP-1, -2) salınımı üzerine etkilerini belirlemektir.

Yöntemler:

İnsan monosit precursor hücreleri (THP-1) makrofaj adherent hücrelere dönüştürülmüştür. Makrofaj hücreleri 24 saat LPS ile stimule edilmiş ve NAC veya Ca(OH)2 ile 24, 48 ve 72 saat inkübe edilmişlerdir. İnkübasyonu takiben, MMP-2, -9 ve TIMP-1,-2 mRNA seviyeleri ve protein salınımı enzim ilintili immun test (ELISA) ve kantitatif eş zamanlı polimeraz zincir reaksiyonu (qRT-PCR) ile değerlendirilmiştir. Veriler istatistiksel olarak Bonferronni testini takiben (α=0.05) iki yönlü varyans analizi (ANOVA) ile analiz edilmiştir.

Bulgular:

Ca(OH)2 24. saatte sadece MMP-9 mRNA salınımını azaltırken, NAC, hem MMP-9 protein hem de mRNA salınımını belirgin bir şekilde azaltmıştır ancak her iki materyal de 48.saatte MMP-9 protein ve mRNA salınımını arttırmıştır. Dahası NAC ve Ca(OH)2 MMP-2 mRNA salınımını 24. saatte azaltırken, NAC bu salınımı 48. saatte arttırmıştır. NAC and Ca(OH)2 TIMP-1 ve -2 mRNA salınımını 24. saatte azaltırken, sadece NAC, TIMP-1 mRNA salınımını 48. saatte arttırmıştır.

Sonuç:

Sonuçlarımız, inflamasyonun erken safhasında NAC and Ca(OH)2’ in makrofajlar üzerinde anti-inflamatuar etkilerinin olduğunu göstermiştir.

Keywords: NAC; Ca(OH)2; MMP-2; MMP-9; TIMP-1; TIMP-2; Macrophage cell line

Anahtar kelimeler: NAC; Ca(OH)2; MMP-2; MMP-9; TIMP-1; TIMP-2; Makrofaj hücre hattı

References

  • 1.

    Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 1965;20: 340–9.CrossrefPubMedGoogle Scholar

  • 2.

    Stashenko P, Teles R, D’Souza R. Periapical inflammatory responses and their modulation. Crit Rev Oral Biol Med 1998;9:498–521.CrossrefPubMedGoogle Scholar

  • 3.

    Sorsa T, Tjaderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis 2004;10:311–8.CrossrefPubMedGoogle Scholar

  • 4.

    Woessner JF, Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991;5:2145–54.PubMedGoogle Scholar

  • 5.

    Lambert E, Dasse E, Haye B, Petitfrere E. TIMPs as multifacial proteins. Crit Rev Oncol Hematol 2004;49:187–98.CrossrefPubMedGoogle Scholar

  • 6.

    Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993;4:197–250.PubMedCrossrefGoogle Scholar

  • 7.

    Shin SJ, Lee JI, Baek SH, Lim SS. Tissue levels of matrix metalloproteinases in pulps and periapical lesions. J Endod 2002;28:313–5.CrossrefPubMedGoogle Scholar

  • 8.

    Itoh T, Nakamura H, Kishi J, Hayakawa T. The activation of matrix metalloproteinases by a whole-cell extract from Prevotella nigrescens. J Endod 2009;35:55–9.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 9.

    Buzoglu HD, Unal H, Ulger C, Mert S, Kucukyildirim S, Er N. The zymographic evaluation of gelatinase (MMP-2 and -9) levels in acute and chronic periapical abscesses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:e121–6.Web of ScienceCrossrefPubMedGoogle Scholar

  • 10.

    Corotti MV, Zambuzzi WF, Paiva KB, Menezes R, Pinto LC, Lara VS, et al. Immunolocalization of matrix metalloproteinases-2 and -9 during apical periodontitis development. Arch Oral Biol 2009;54:764–71.Web of ScienceCrossrefPubMedGoogle Scholar

  • 11.

    Letra A, Ghaneh G, Zhao M, Ray H, Jr., Francisconi CF, Garlet GP, et al. MMP-7 and TIMP-1, new targets in predicting poor wound healing in apical periodontitis. J Endod 2013;39:1141–6.CrossrefWeb of SciencePubMedGoogle Scholar

  • 12.

    Pereira Faustino IS, Azevedo RS, Takahama A, Jr. Metalloproteinases 2 and 9 immunoexpression in periapical lesions from primary endodontic infection: possible relationship with the histopathological diagnosis and the presence of pain. J Endod 2016;42:547–51.Web of SciencePubMedCrossrefGoogle Scholar

  • 13.

    Sjogren U, Figdor D, Spangberg L, Sundqvist G. The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing. Int Endod J 1991;24:119–25.CrossrefPubMedGoogle Scholar

  • 14.

    Yang WK, Kim MR, Lee Y, Son HH, Lee W. Effect of calcium hydroxide-treated Prevotella nigrescens on the gene expression of matrix metalloproteinase and its inhibitor in MG63 cells. J Endod 2006;32:1142–5.CrossrefPubMedGoogle Scholar

  • 15.

    Paula-Silva FW, da Silva LA, Kapila YL. Matrix metalloproteinase expression in teeth with apical periodontitis is differentially modulated by the modality of root canal treatment. J Endod 2010;36:231–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 16.

    Sahebi S, Moazami F, Abbott P. The effects of short-term calcium hydroxide application on the strength of dentine. Dent Traumatol 2010;26:43–6.Web of SciencePubMedCrossrefGoogle Scholar

  • 17.

    Barbizam JV, Trope M, Teixeira EC, Tanomaru-Filho M, Teixeira FB. Effect of calcium hydroxide intracanal dressing on the bond strength of a resin-based endodontic sealer. Braz Dent J 2008;19:224–7.CrossrefPubMedGoogle Scholar

  • 18.

    Mohammadi Z, Dummer PM. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J 2011;44:697–730.CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Silva EJ, Accorsi-Mendonca T, Almeida JF, Ferraz CC, Gomes BP, Zaia AA. Evaluation of cytotoxicity and up-regulation of gelatinases in human fibroblast cells by four root canal sealers. Int Endod J 2012;45:49–56.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 20.

    Portenier I, Waltimo TM, Haapasalo M. Enterococcus faecalis-the root canal survivor and ‘star’ in post treatment disease. Endodontic Topics 2003;6:341–5.Google Scholar

  • 21.

    Sadowska AM, Manuel YK, De Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther 2007;20:9–22.Web of SciencePubMedCrossrefGoogle Scholar

  • 22.

    Aksoy Y, Kesik K, Canpınar H. Does N-acetyl cysteine protect against apoptosis in HL-60 cell line. Tur J Biochem 2010;35:333–9.Google Scholar

  • 23.

    Kim DY, Jun JH, Lee HL, Woo KM, Ryoo HM, Kim GS, et al. N-acetylcysteine prevents LPS-induced pro-inflammatory cytokines and MMP2 production in gingival fibroblasts. Arch Pharm Res 2007;30:1283–92.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 24.

    Karapinar SP, Akkaya Ulum YZ, Ozcelik B, Dogan Buzoglu H, Ceyhan D, Balci Peynircioglu B, et al. The effect of N-acetylcysteine and calcium hydroxide on TNF-α and TGF-β1 in lipopolysaccharide-activated macrophages. Arch Oral Biol 2016;68:48–54.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 25.

    Toker H, Ozdemir H, Eren K, Ozer H, Sahin G. N-acetylcysteine, a thiol antioxidant, decreases alveolar bone loss in experimental periodontitis in rats. J Periodontol 2009;80:672–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Galis ZS, Asanuma K, Godin D, Meng X. N-acetyl-cysteine decreases the matrix-degrading capacity of macrophage-derived foam cells: new target for antioxidant therapy? Circulation 1998;97:2445–53.CrossrefPubMedGoogle Scholar

  • 27.

    Bogani P, Canavesi M, Hagen TM, Visioli F, Bellosta S. Thiol supplementation inhibits metalloproteinase activity independent of glutathione status. Biochem Biophys Res Commun 2007;363:651–5.CrossrefWeb of SciencePubMedGoogle Scholar

  • 28.

    Quah SY, Wu S, Lui JN, Sum CP, Tan KS. N-acetylcysteine inhibits growth and eradicates biofilm of Enterococcus faecalis. J Endod 2012;38:81–5.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 29.

    Centrella M, McCarthy TL, Canalis E. Transforming growth factor-beta and remodeling of bone. J Bone Joint Surg Am 1991;73:1418–28.PubMedCrossrefGoogle Scholar

  • 30.

    Han YP, Tuan TL, Wu H, Hughes M, Gardner WL. TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP. J Cell Sci 2001;114(Pt1):131–9.PubMedGoogle Scholar

  • 31.

    Palaniswamy U, Lakkam SR, Arya S, Aravelli S. Effectiveness of N-acetyl cysteine, 2% chlorhexidine, and their combination as intracanal medicaments on Enterococcus faecalis biofilm. J Conserv Dent 2016;19:17–20.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-02-10

Accepted: 2017-03-23

Published Online: 2017-04-19


Conflict of interest statement: The authors have no conflict of interest.


Citation Information: Turkish Journal of Biochemistry, 20170046, ISSN (Online) 1303-829X, ISSN (Print) 0250-4685, DOI: https://doi.org/10.1515/tjb-2017-0046.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in