Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2017: 0.248
5-year IMPACT FACTOR: 0.356

CiteScore 2017: 0.25

SCImago Journal Rank (SJR) 2017: 0.149
Source Normalized Impact per Paper (SNIP) 2017: 0.206

Online
ISSN
1303-829X
See all formats and pricing
More options …
Volume 43, Issue 3

Issues

Strain improvement of newly isolated Lactobacillus acidophilus MS1 for enhanced bacteriocin production

Geliştirilmiş bakteriyosin üretimi için yeni izole edilen Lactobacillus acidophilus MS1’in suşunun iyileştirilmesi

Mahwish Salman
  • Corresponding author
  • Department of Biochemistry, Government College University, Faisalabad – 38030, Pakistan, Tel.: 0419201037, Fax: 0419200671
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shazia Anwer Bukhari / Muhammad Shahid / Tanzila Sahar / Shazia Naheed
Published Online: 2017-09-13 | DOI: https://doi.org/10.1515/tjb-2017-0075

Abstract

Background:

Lactic acid bacteria (LAB) are considered as GRAS (generally recognized as safe) and being used extensively as bio-preservatives. Bacteriocins, the metabolites of LAB, belong to a diverse family of naturally synthesized antimicrobial peptides.

Objective:

Strain improvement for enhanced bacteriocin production by physical and chemical mutagenesis.

Methods:

The bacterial strain was identified by 16S rDNA sequence analysis and improved by ultraviolet and ethidium bromide mutation. The resultant bacteriocin was biochemically characterized, purified and analyzed for mass determination.

Results:

Among mutants of identified Lactobacillus acidophilus MS1, the UV6 (ultraviolet mutant) revealed 3400 AU bacteriocin activity with 42% survival rate and EB5 (ethidium bromide mutant) exhibited 4020 AU with 28% survival rate. Bacteriocin of 6.5 kDa was purified by cation exchange and gel exclusion chromatography. It was found to be thermally stable at 100°C for 30 min and maintained the stability up to 121°C. The activity was monitored in a wide range of pH (4–9).

Conclusion:

Being resistant to several biochemical parameters, the bacteriocins have an effective incorporation in food, forage and pharmacy. There is a need to engage more efforts to explore novel bacteriocins and multifarious applications.

Özet

Giriş ve amaç:

Laktik asit bakterileri GRAS (genellikle güvenli) olarak kabul edilir ve biyo-koruyucular olarak yaygın olarak kullanılmaktadır. Bakteriyosinler, laktik asit bakterilerinin metabolitleri, doğal olarak sentezlenmiş antimikrobiyal peptit ailesine aittir. Amacımız fiziksel ve kimyasal mutajenez ile bakteriyosin üretimi arttırmış yeni suşlar üretmektir.

Yöntem ve gereçler:

Bakteri türü 16S rDNA sekans analizi ile tanımlandı; ultraviyole ve etidyum bromür mutasyonu ile geliştirildi. Ortaya çıkan bakteriyosin, biyokimyasal olarak karakterize edildi, saflaştırıldı ve kütle tayini için analiz edildi.

Bulgular:

Tespit edilen Lactobacillus acidophilus MS1 mutantları arasında UV6 (ultraviyole mutant) % 42 canlılık oranı ile 3400 AU bakteriyosin aktivitesi ve EB5 (etidyum bromür mutantı), % 28 canlılık oranı ile 4020 AU göstermiştir. 6.5 kDa’lık bakteriyosin, katyon değişimi ve jel dışlama kromatografisi ile saflaştırıldı. 30 dakika süreyle 100°C’de termal olarak kararlı olduğu bulundu ve 121°C’ye kadar stabilite muhafaza edildi. Etkinlik geniş bir pH aralığında (4–9) izlendi.

Tartişma ve sonuç:

Birkaç biyokimyasal parametreye karşı dirençli olan bakteriyosinler gıda, yem ve eczacılıkta etkin bir şekilde kullanılmaktadır. Yeni bakteriyosinler ve çok yönlü uygulamaları keşfetmek için daha fazla çaba harcamaya ihtiyaç vardır.

Keywords: Lactobacillus acidophilus; Mozzarella cheese; Mutagenesis; Bacteriocin

Anahtar Kelimeler: Lactobacillus acidophilus; Mozzarella peyniri; Mutagenez; Bakteriyosin

References

  • 1.

    Waters DM, Mauch A, Coffey A, Arendt EK, Zannini E. Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: a review. Crit Rev Food Sci Nutr 2015;55:503–20.Web of ScienceCrossrefPubMedGoogle Scholar

  • 2.

    Salman M, Shahid M, Jamil A, Rahman SU. Effect of Lactobacillus acidophilus bacteriocin on Bacillus cereus biofilms. JPAM 2014;8:3721–8.Google Scholar

  • 3.

    Huang R, Tao X, Wan C, Li S, Xu H, Xu F, et al. In vitro probiotic characteristics of Lactobacillus plantarum ZDY 2013 and its modulatory effect on gut microbiota of mice. J Dairy Sci 2015;98:5850–61.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 4.

    Cencic A, Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010;2:611–25.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 5.

    Balciunas EM, Martinez FA, Todorov SD, de Melo Franco BD, Converti A, de Souza Oliveira RP. Novel biotechnological applications of bacteriocins: a review. Food Control 2013;32:134–42.Web of ScienceCrossrefGoogle Scholar

  • 6.

    Martinez RR, Wachsman M, Torres NI, Blanc JG, Todorov SD, Gombossy de Melo Franco BD. Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiol 2013;34:376–81.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 7.

    Prudêncio CV, dos Santos MT, Vanetti MC. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. J Food Sci Technol 2015;52:5408–17.Web of SciencePubMedCrossrefGoogle Scholar

  • 8.

    Dobson A, Crispie F, Rea MC, O’Sullivan O, Casey PG, Lawlor PG, et al. Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiol Ecol 2011;76:602–14.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 9.

    Riley MA, Chavan MA. Bacteriocins. Heidelberg, Berlin: Springer-Verlag, 2007.Google Scholar

  • 10.

    Mozzi F, Vignolo GM. Biotechnology of lactic acid bacteria: novel applications. USA: John Wiley & Sons, 2010.Google Scholar

  • 11.

    Gratia JP. Andre Gratia: a forerunner in microbial and viral genetics. Genetics 2000;156:471–6.Google Scholar

  • 12.

    Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol R 2006;70:564–82.CrossrefGoogle Scholar

  • 13.

    Bierbaum G, Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 2009;10:2–18.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 14.

    Deraz SF, Karlsson EN, Hedström M, Andersson MM, Mattiasson B. Purification and characterization of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. J Bacteriol 2005;117:343–54.Google Scholar

  • 15.

    Pringsulaka O, Thongngam N, Suwannasai N, Atthakor W, Pothivejkul K, Rangsiruji A. Partial characterisation of bacteriocins produced by lactic acid bacteria isolated from Thai fermented meat and fish products. Food Control 2012;23:547–51.CrossrefWeb of ScienceGoogle Scholar

  • 16.

    Gawel D, Maliszewska-Tkacyk M, Jonczyk P, Schaaper RM, Fijalkowska IJ. Lack of strand bias in UV-induced mutagenesis in Escherichia coli. J Bacteriol 2002;184:4449–54.PubMedCrossrefGoogle Scholar

  • 17.

    Sobrun Y, Bhaw-Luximon A, Jhurry D, Puchooa D. Isolation of lactic acid bacteria from sugar cane juice and production of lactic acid from selected improved strains. Adv Biosci Biotechnol 2012;3:398–407.CrossrefGoogle Scholar

  • 18.

    Javed S, Asgher M, Sheikh MA, Nawaz H. Strain improvement through UV and chemical mutagenesis for enhanced citric acid production in molasses-based solid state fermentation. Food Biotechnol 2010;24:165–79.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Sudi IY, De N, Ali-Dunkrah U. Mutagenesis and selection of Lactobacillus bulgaricus and Streptococcus thermophilus for potential use as starter culture. J Am Sci 2008;4:80–7.Google Scholar

  • 20.

    Usmiati S, Marwati T. Selection and optimization process of bacteriocin production from Lactobacillus sp. Ind J Agric Sci 2009;2:82–92.Google Scholar

  • 21.

    Hata T, Tanaka R, Ohmomo S. Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. Int J Food Microbiol 2010;137:94–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 22.

    Srdjan S, Dragana V, Ivana D, Branislava S, Milena SV. A modified microtitre-plate test for quantification of staphylococcal biofilm formation. J Microbiol Meth 2000;40:175–9.CrossrefGoogle Scholar

  • 23.

    de Lima Pimenta A, Chiaradia-Delatorre LD, Mascarello A, de Oliveira KA, Leal PC, Yunes RA, et al. Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing. Int J Antimicrob Aging 2013;42:519–23.CrossrefGoogle Scholar

  • 24.

    Todorov SD. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol 2008;39:178–87.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 25.

    Aslam M, Shahid M, Rehman FU, Murtaza MA, Sharif S, Ata A, et al. Production optimization and characterization of a low molecular weight bacteriocin from Lactococcus lactis subsp. Lactis. Afr J Microbiol Res 2012;6:5924–33.Web of ScienceGoogle Scholar

  • 26.

    Schägger H. Tricine–SDS-PAGE. Nat Protoc 2006;1:16–22.CrossrefPubMedGoogle Scholar

  • 27.

    Ljungh A, Wadström T. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol 2006;7:73–89.PubMedGoogle Scholar

  • 28.

    Nakamura K, Arakawa K, Kawai Y, Yasuta N, Chujo T, Watanabe M, et al. Food preservative potential of gassericin A-containing concentrate prepared from cheese whey culture supernatant of Lactobacillus gasseri LA39. Ani Sci J 2013;84:144–9.CrossrefGoogle Scholar

  • 29.

    De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 2007;13:194–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 30.

    Zacharof MP, Lovitt RW. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia 2012;31:50–6.Google Scholar

  • 31.

    Majed R, Faille C, Kallassy M, Gohar M. Bacillus cereus Biofilms-same, only different. Front Microbiol 2016;7:1054.Web of SciencePubMedGoogle Scholar

  • 32.

    Zamfir M, Grosu-Tudor SS. Impact of stress conditions on the growth of Lactobacillus acidophilus IBB 801 and production of acidophilin 801. J Gen Appl Microbiol 2009;55:277–82.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 33.

    De Vuyst L, Vandamme EJ. Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. London: Blackie Academic and Professional, 1994:91–142.Google Scholar

  • 34.

    Oscariz JC, Pisabarro AG. Classification and mode of action of membrane active bacteriocins produced by Gram-positive bacteria. Int Microbiol 2001;4:13–9.PubMedGoogle Scholar

  • 35.

    Abo-Amer AE. Chromosomal genes-mediated inhibition of intestinal and foodborne pathogens by Lactobacillus acidophilus AA1. Rev Latinoam Microbiol 2006;48:24–30.Google Scholar

  • 36.

    Kanatani K, Oshimura M, Sano K. Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus. Appl Environ Microbiol 1995;61:1061–7.PubMedGoogle Scholar

  • 37.

    Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res-Fund Mol M 2005;571:3–17.CrossrefGoogle Scholar

  • 38.

    Rohwerder T, Gehrke T, Kinzler K, Sand W. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 2003;63:239–48.Google Scholar

  • 39.

    Yang Y, Zhang S, Xu AL, Zou LH, Li L, Qiu GZ. UV-induced mutagenesis and bioleaching of Acidiphilium cryptum and Acidithiobacillus ferrooxidans. J Cent South Univ T 2010;41:393–9.Google Scholar

  • 40.

    Ohta T, Tokishita SI, Yamagata H. Ethidium bromide and SYBR Green I enhance the genotoxicity of UV-irradiation and chemical mutagens in E. coli. Mutat Res-Envir Muta 2001;492:91–7.CrossrefGoogle Scholar

  • 41.

    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001;411:603–6.PubMedCrossrefGoogle Scholar

  • 42.

    Beggs CB. A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochem Photobiol Sci 2002;1:431–7.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-03-08

Accepted: 2017-07-25

Published Online: 2017-09-13


Conflict of interest statement: The authors declare that they have no conflict of interest.


Citation Information: Turkish Journal of Biochemistry, Volume 43, Issue 3, Pages 323–332, ISSN (Online) 1303-829X, DOI: https://doi.org/10.1515/tjb-2017-0075.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in