Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi

6 Issues per year


IMPACT FACTOR 2017: 0.248
5-year IMPACT FACTOR: 0.356

CiteScore 2017: 0.25

SCImago Journal Rank (SJR) 2017: 0.149
Source Normalized Impact per Paper (SNIP) 2017: 0.206

Online
ISSN
1303-829X
See all formats and pricing
More options …

Cultural conditions optimization for production of β-galactosidase from Bacillus licheniformis ATCC 12759 under solid-state fermentation

Katı Faz Fermantasyonu altında Bacillus licheniformis ATCC 12759’dan β-Galaktosidazın Üretimi için Kültürel Şartların Optimizasyonu

Nurullah AkcanORCID iD: http://orcid.org/0000-0003-3960-9553
Published Online: 2018-01-30 | DOI: https://doi.org/10.1515/tjb-2017-0153

Abstract

Objective:

The aim of this work was to study the optimal cultivation conditions for β-galactosidase production by Bacillus licheniformis ATCC 12759.

Materials and methods:

The screening of β-galactosidase production from B. licheniformis ATCC 12759 was performed by solid state fermentation method on media rich with rice bran (RB). Different factors were tested for the optimization of β-galactosidase production.

Results:

Certain fermentation parameters involving incubation time, incubation temperature, inoculum level, moisture content, initial pH, agitation speed, size of fermentation medium and optimum temperature of β-galactosidase activity were studied separately. Maximal amount of β-galactosidase production was obtained when solid-state fermentation (SSF) was carried out using RB, having inoculum level 35%, moisture content of 20%, initial pH 7.5 at 37°C for 48 h.

Conclusion:

Results indicated that optimal fermentation conditions play a key role in the maximum production of β-galactosidase from B. licheniformis ATCC 12759. This study shows the potential of the studied enzymes to be promoting candidates for the degradation of lactose and production of important bioproducts.

Özet

Amaç:

Bu çalışmada Bacillus licheniformis ATCC 12759’dan β-galaktosidaz üretimi için optimal kültür şartlarının belirlenmesi amaçlanmıştır.

Materyal ve Metod:

Bacillus licheniformis ATCC 12759’dan β-galaktosidaz üretiminin taranması pirinç kepegiyle zenginleştirilmiş ortamda katı faz fermantasyon metodu ile gerçekleştirildi. β-galaktosidazın optimizasyonu için çeşitli faktörler test edildi.

Bulgular:

İnkübasyon zamanı, inkübasyon sıcaklığı, inokülüm oranı, nem içeriği, başlangıç pH, çalkalanma hızı ve β-galaktosidaz aktivitesinin optimum sıcaklığını içeren belirli fermantasyon parametreleri ayrı ayrı incelendi. 48. saatte, 37ºC’de, başlangıç pH 7.5, nem içeriği 20%, inokülüm oranı 35% pirinç kepeği kullanılarak KSF ile gerçekleştirildiğinde maksimum miktarda β-galaktosidaz üretimi elde edildi.

Sonuç:

Sonuçlar, optimal fermantasyon koşullarının B. licheniformis ATCC 12759’dan maksimum β-galaktosidaz üretiminde önemli rol oynadığını gösterdi. Bu çalışma incelenen enzimin laktozun parçalanması ve önemli biyoürünleri için potansiyelini göstermektedir.

Keywords: Bacillus licheniformis; β-galactosidase; Fermentation; Optimization; Rice bran

Anahtar Kelimeler: Bacillus licheniformis; β-galaktosidaz; Fermantasyon; Optimizasyon; Pirinç kepeği

References

  • 1.

    Kamran A, Bibi Z, Amana A, Qader SA. Lactose hydrolysis approach: isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. Biocatal Agric Biotechnol 2016;5:99–103.Web of ScienceGoogle Scholar

  • 2.

    Haider T, Husain Q. Immobilizationof β galactosidase from Aspergillus oryzae via immunoaffinity support. Biochem Eng J 2009;43:307–14.CrossrefGoogle Scholar

  • 3.

    Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ. Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. J Agric Food Chem 2012;60:6391–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 4.

    Satar R, Ismail SA, Rehan M, Ansari SA. Elucidating the binding efficacy of β-galactosidase on graphene by docking approach and its potential application in galacto-oligosaccharide production. Bioprocess Biosyst Eng 2016;39:807–14.CrossrefWeb of SciencePubMedGoogle Scholar

  • 5.

    Yin H, Bultema JB, Dijkhuizen L, van Leeuwen SS. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chem 2017;225:230–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 6.

    Vulevic J, Juric A, Tzortzis G, Gibson GR. Galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 2013;143:324–31.Web of SciencePubMedCrossrefGoogle Scholar

  • 7.

    Whisner CM, Martin BR, Schoterman MH, Nakatsu CH, McCabe LD, McCabe GP, et al. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr 2013;110:1292–303.Web of ScienceCrossrefPubMedGoogle Scholar

  • 8.

    Liua Y, Chen Z, Jiang Z, Yan Q, Yanga S. Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. Int J Biol Macromol 2017;104:1055–63.CrossrefWeb of SciencePubMedGoogle Scholar

  • 9.

    Husain Q. β-galactosidases and their potential applications: a review. Crit Rev Biotechnol 2010;30:41–62.CrossrefWeb of SciencePubMedGoogle Scholar

  • 10.

    Cardoso BB, Silvério SC, Abrunhosa L, Teixeira JA, Rodrigues LR. β-galactosidase from Aspergillus lacticoffeatus: a promising biocatalyst for the synthesis of novel prebiotics. Int J Food Microbiol 2017;257:67–74.Web of ScienceCrossrefPubMedGoogle Scholar

  • 11.

    Panesar PS, Panesar R, Singh RS, Kennedy JF, Kumar H. Microbial production, immobilization and applications of β-D-galactosidase. J Chem Technol Biotechnol 2006;81: 530–43.CrossrefGoogle Scholar

  • 12.

    Kar S, Datta TK, Ray RC. Optimization of thermostable α-amylase production by Streptomyces erumpens MTCC 7317 in solid-state fermentation using cassava fibrous residue. Braz Arc Bıo Technol 2010;53:301–9.CrossrefGoogle Scholar

  • 13.

    Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 2000;74:69–80.CrossrefGoogle Scholar

  • 14.

    Xu H, Sun L, Zhao D, Zhang B, Shi Y, Wu Y. Production of α-amylase by Aspergillus oryzae As 3951 in solid state fermentation using spent brewing grains as substrate. J Sci Food Agric 2008;88:529–35.CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Kumar PK, Lonsane BK. Gibberellic acid by solid state fermentation: consistent and improved yields. Biotechnol Bioeng 2004;30:267–71.Google Scholar

  • 16.

    Tanyildizi MS, Özer D, Elibol M. Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochem Eng J 2007;37:294–7.CrossrefWeb of ScienceGoogle Scholar

  • 17.

    Pandey A, Selvakumar P, Soccol CR, Singh N, Poonam N. Solid state fermentation for the production of industrial enzymes. Curr Scı 1999;77:149–62.Google Scholar

  • 18.

    Vasiljevic T, Jelen P. Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Inn Food Sci Emerg Technol 2001;2:75–85.CrossrefGoogle Scholar

  • 19.

    Wang CL, Li DF, Lu WQ, Wang YH, Lai CH. Influence of cultivating conditions on the α-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation. Lett Appl Microbiol 2004;39:369–75.CrossrefPubMedGoogle Scholar

  • 20.

    Singh H, Soni SK. Production of starch-gel digesting amyloglucosidase by Aspergillus oryzae HS-3 in solid state fermentation. Process Biochem 2001;37:453–9.CrossrefGoogle Scholar

  • 21.

    Latifian M, Esfahani ZH, Barzegar M. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour Technol 2007;98:3634–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 22.

    Ng IS, Li CW, Chan SP, Chir JL, Chen PT, Tong CG, et al. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour Technol 2010;101:1310–7.CrossrefWeb of SciencePubMedGoogle Scholar

  • 23.

    Nizamuddin S, Sridevi A, Narasimha G. Production of β-galactosidase by Aspergillus oryzae in solid-state fermentation. Afr J Biotechnol 2008;7:1096–100.Google Scholar

  • 24.

    Anisha GS, Rojan PJ, Nicemol J, Niladevi KN, Prema P. Production and characterization of partially purified thermostable a-galactosidases from Streptomyces griseoloalbus for food industrial applications. Food Chem 2008;111:631–5.Web of ScienceCrossrefGoogle Scholar

  • 25.

    Sangeeta N, Rintu B. Optimization of extraction and purification of glucoamylase produced by Aspergillus awamori in solid-state fermentation. Biotechnol and Bioprocess Eng 2009;14:60–6.CrossrefWeb of ScienceGoogle Scholar

  • 26.

    Ahmed SA. Optimization of production and extraction parameters of Bacillus megaterium levansucrase using solid-state fermentation. J Appl Sci Res 2008;4:1199–204.Google Scholar

  • 27.

    Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Pandey A. Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol Biotechnol 2006;44:269–74.Google Scholar

  • 28.

    Dagbagli S, Goksungur Y. Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electronic J Biotechnol 2008;11.Web of ScienceGoogle Scholar

  • 29.

    Baysal Z, Uyar F, Aytekin Ç. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-springwater. Process Biochem 2003;38:1665–8.CrossrefGoogle Scholar

  • 30.

    Kashyap P, Sabu A, Pandey A, Szakas G, Soccol CR. Extracellular L-glutaminaseproduction by Zygosaccharomyces rouxii under solid state fermentation. Process Biochem 2002;38:307–12.CrossrefGoogle Scholar

  • 31.

    Pandey A, Soccol CR, Rodriguez LJ, Nigam P. Solid-state fermentation in biotechnology. Fundamentals and applications. New Delhi: Asiatech Publishers Inc., 2001: 98.Google Scholar

  • 32.

    Hsu CA, Yu RC, Chou CC. Production of h-galactosidase by Bifidobacteria as influenced by various culture conditions. Int J Food Microbiol 2005;104:197–206.PubMedCrossrefGoogle Scholar

  • 33.

    Konsoula Z, Kyriakides ML. Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technol 2007;98:150–7.CrossrefWeb of ScienceGoogle Scholar

  • 34.

    Kim JW, Rajagopal SN. Isolation and characterization of b-galactosidase from Lactobacillus crispatus. Folia Microbiol 2000;45:29–34.CrossrefGoogle Scholar

  • 35.

    Batra N, Singh J. Production and characterization of a thermostable β-galactosidase from Bacillus coagulans RCS3. Biotechnol Appl Biochem 2002;236:1–6.Google Scholar

  • 36.

    Hernandez N, Rodriguez-Alegría ME, Gonzalez F, Lopez-Munguia A. Enzymatic treatment of rice bran to improve processing. J Am Oil Chem Soc 2000;77:177–80.CrossrefGoogle Scholar

  • 37.

    Purwanto LA, Ibrahim D. Sudrajat effect of agitation speed on morphological changes in Aspergillus niger hyphae during production of tannase. World J Chem 2009;4:34–8.Google Scholar

  • 38.

    Nadeem M, Qazi JI, Baig S. Effect of aeration and agitation rates on alkaline protease production by Bacillus licheniformis UV-9 Mutant. Turkish J Biochem 2009;34:89–96.Google Scholar

  • 39.

    Mitchell DA, Krieger N, Stuart DM, Pandey A. New developments in solid-state fermentation II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 2000;35:1211–25.Google Scholar

  • 40.

    Shankar SK, Mulimani VH. α-Galactosidase production by Aspergillus oryzae in solid-state fermentation. Bioresource Technol 2007;98:958–61.CrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding author: Dr. Nurullah Akcan, Health High School, Siirt University, TR-56100 Siirt, Turkey, Phone: +90 484 223 10 56, Fax: +90 484 223 51 56


Received: 2017-06-04

Accepted: 2017-10-30

Published Online: 2018-01-30


Citation Information: Turkish Journal of Biochemistry, Volume 43, Issue 3, Pages 240–247, ISSN (Online) 1303-829X, DOI: https://doi.org/10.1515/tjb-2017-0153.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in