Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Turkish Journal of Biochemistry

Türk Biyokimya Dergisi


IMPACT FACTOR 2018: 0.329

CiteScore 2018: 0.28

SCImago Journal Rank (SJR) 2018: 0.138
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Online
ISSN
1303-829X
See all formats and pricing
More options …
Ahead of print

Issues

Neutrophil gelatinase-associated lipocalin as a potential biomarker for pulmonary thromboembolism

Pulmoner Tromboembolinin Potansiyel Bir Biyobelirteci Olarak Nötrofil Jelatinaz-İlişkili Lipokalin (NGAL)

Songul OzyurtORCID iD: https://orcid.org/0000-0002-9768-1425 / Mevlut Karatas
  • Department of Pulmonology, Atatürk Chest Surgery and Chest Disease Education and Training Hospital, Ankara, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Medeni Arpa / Bilge Yilmaz Kara / Hakan Duman / Melek Memoglu / Unal Sahin
Published Online: 2019-10-12 | DOI: https://doi.org/10.1515/tjb-2018-0308

Abstract

Objective

Pulmonary thromboembolism (PTE) is a clinical condition that can be lethal unless promptly diagnosed and treated. The objective was to evaluate the significance of serum neutrophil gelatinase-associated lipocalin (NGAL) in the diagnosis of PTE.

Materials and methods

In this study, 60 patients hospitalized for acute PTE between May 2015 and December 2016 were enrolled. PTE was diagnosed using spiral computed tomography angiography of the thorax. Cardiac enzyme levels, arterial blood gas, and echocardiography measurements were performed. Whole blood samples were drawn to measure serum NGAL before treatment.

Results

The PTE group comprised 34 women and 26 men, and the healthy control group included 22 women and 18 men. The mean ages of the patient and control groups were 70.3 ± 14.4 years and 69.0 ± 10.2 years, respectively. Serum NGAL was significantly higher in the patients than in the controls (88.6 ± 33.6 vs. 31.7 ± 10.0 ng/mL, p < 0.001, respectively). The optimal NGAL cut-off value was >50 ng/mL, the sensitivity was 100%, specificity was 98.3%, the negative predictive value was 100%, and the positive predictive value was 68%.

Conclusion

Serum NGAL is a new biomarker with high sensitivity and specificity to detect, diagnose, and exclude PTE.

ÖZ

Amaç

Pulmoner tromboembolizm (PTE), hızlı tanı konulup tedavi edilmediğinde öldürücü olabilen klinik bir durumdur. Bu çalışmada amacımız PTE tanısında serum nötrofil jelatinaz ilişkili lipokalinin (NGAL) önemini değerlendirmekti.

Gereç ve Yöntem

Bu çalışmaya Mayıs 2015 – Aralık 2016 tarihleri arasında akut PTE nedeniyle hospitalize edilen 60 hasta alındı. PTE tanısı toraks spiral bilgisayarlı tomografisi ile kondu. Kardiyak enzim düzeyi, arter kan gazı ve ekokardiyografi ölçümleri yapıldı. Tedavi öncesi serum NGAL düzeyini ölçmek için tam kan örnekleri alındı.

Bulgular

PTE grubunun 34’ü kadın, 26’sı erkek, sağlıklı kontrol grubunun 22’si kadın,18’I erkek hastalardan oluşmaktaydı. PTE grubunun ve kontrol grubunun yaş ortalamaları sırası ile 70.3 ± 14.4 ve 69.0 ± 10.2 idi. Serum NGAL, PTE grubunda kontrol grubundan anlamlı derecede yüksekti (88.6 ± 33.6’ya karşılık 31.7 ± 10.0 ng/mL, p < 0.001). Optimal NGAL kesme değeri >50 ng/mL alındığında, duyarlılık % 100, özgüllük % 98.3, negatif prediktif değer % 100 ve pozitif prediktif değer % 68 saptandı.

Sonuç

Serum NGAL, PTE’yi saptama, tanısını koyma ve dışlama konularında yüksek duyarlılığa ve özgüllüğe sahip yeni bir biyobelirteçtir.

Keywords: Neutrophil gelatinase-associated lipocalin; Pulmonary thromboembolism; Biomarker; Inflammation; Diagnosis

Anahtar kelimeler: nötrofil jelatinaz-ilişkili lipokalin; pulmoner tromboemboli; biyobelirteç; inflamasyon; tanı

References

  • 1.

    Nordenholz KE, Mitchell AM, Kline JA. Direct comparison of the diagnostic accuracy of fifty protein biological markers of pulmonary embolism for use in the emergency department. Acad Emerg Med 2008;15:795–9.Web of SciencePubMedCrossrefGoogle Scholar

  • 2.

    Singer E, Markó L, Paragas N, Barasch J, Dragun D, Müller DN, et al. Neutrophilgelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol (Oxf) 2013;207:663–72.CrossrefGoogle Scholar

  • 3.

    Kai M, Schmidt O, Mori K, Li Y, Kalandadze A, Cohen DJ, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2007;18:407–13.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 4.

    Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E, et al. Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer 2009;9:390.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 5.

    Kim JW, Hong DY, Lee KR, Kim SY, Baek KJ, Park SO. Usefulness of plasma neutrophil gelatinase-associated lipocalin concentration for predicting the severity and mortality of patients with community-acquired pneumonia. Clin Chim Acta 2016;462:140–5.Web of ScienceCrossrefPubMedGoogle Scholar

  • 6.

    Cockayne DA, Cheng DT, Waschki B, Sridhar S, Ravindran P, HiltonH, et al. Systemic biomarkers of neutrophilic inflammation, tissue injury and repair in COPD patients with differing levels of disease severity. PLoS One 2012;7:e38629.Web of ScienceCrossrefPubMedGoogle Scholar

  • 7.

    Berghaus TM, Schwaiblmair M, vonScheidt W. Renal biomarkers and prognosis in acute pulmonary embolism. Heart 2012;98:1185–6.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 8.

    Kostrubiec M, AndrzejŁabyk A, Pedowska-Włoszek J, Dzikowska-Diduch O, Wojciechowski A, Garlińska M, et al. Neutrophil gelatinase-associated lipocalin, cystatin C and eGFR indicate acute kidney injury and predict prognosis of patients with acute pulmonary embolism. Heart 2012;98:1221–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 9.

    Saritabak E. Serum neutrophil gelatinase-associated lipocalin düzeylerinin tromboembolide tanısal değeri. Dokuz Eylül Üniversitesi, Tıp Fakültesi Acil Tıp Anabilim Dalı, 2013:1–56 (Tez).Google Scholar

  • 10.

    Busceti MT, Grande R, Amato B, Gasbarro V, Buffone G, Amato M, et al. Pulmonary embolism, metalloproteinases and neutrophil gelatinase associated lipocalin. Acta Phlebol 2013;14:115–21.Google Scholar

  • 11.

    Wood KE. Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest 2002;121:877–905.CrossrefPubMedGoogle Scholar

  • 12.

    Arseven O, Sevinc C, Alatas F, Ekim N, Erkan L, Findik S. Turkish Thoracic Society Pulmonary Embolism Diagnosis and Treatment Consensus Report, Pocket Book. Istanbul: Aves Publishing, 2015.Google Scholar

  • 13.

    Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P. Guidelines on the diagnosis and management of acute pulmonary embolism. The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J 2008;29:2276–315.Web of ScienceGoogle Scholar

  • 14.

    Lankeit M, Dellas C, Panzenböck A, Skoro-Sajer N, BondermanD, Olschewski M, et al. Heart-type fatty acid-binding protein for risk assessment of chronic thromboembolic pulmonary hypertension. Eur Respir J 2008;31:1024–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 15.

    Dellas C, Puls M, Lankeit M, Schäfer K, Cuny M, Berner M, et al. Elevated heart-type fatty acid-binding protein levels on admission predict an adverse outcome in normotensive patients with acute pulmonary embolism. J Am Coll Cardiol 2010;55:2150–7.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 16.

    Kearon C, Ginsberg JS, Douketis J, Turpie AG, Bates SM, LeeAY, et al. Canadian Pulmonary Embolism Diagnosis Study (CANPEDS) Group. An evaluation of D-dimer in the diagnosis of pulmonary embolism: a randomized trial. Ann Intern Med 2006;144:812–21.CrossrefGoogle Scholar

  • 17.

    Michiels JJ, Gadisseur A, van der Planken M, Schroyens W, De Maeseneer M, Hermsen JT, et al. Different accuracies of rapid enzyme-linked immunosorbent, turbidimetric, and agglutination D-dimer assays for thrombosis exclusion: impact on diagnostic work-ups of outpatients with suspected deep vein thrombosis and pulmonary embolism. Semin Thromb Hemost 2006;32:678–93.CrossrefPubMedGoogle Scholar

  • 18.

    Kelly J, Rudd A, Lewis RR, Hunt BJ. Plasma D-dimers in the diagnosis of venous thromboembolism. Arch Intern Med 2002;162:747–56.CrossrefGoogle Scholar

  • 19.

    Tamizifar B, Fereyduni F, Esfahani MA, Kheyri S. Comparing three clinical prediction rules for primarily predicting the 30-day mortality of patients with pulmonary embolism: the “Simplified Revised Geneva Score,” the “Original PESI,” and the “Simplified PESI”. Adv Biomed Res 2016;30:137.Google Scholar

  • 20.

    Jiménez D, Aujesky D, Moores L, Gómez V, Lobo JL, Uresandi F, et al. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 2010;170:1383–9.PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Songul Ozyurt, MD, Assistant Professor, Department of Pulmonology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey, Phone: +90 464 2123009, Fax: +90 464 2123015


Received: 2018-07-25

Accepted: 2019-02-28

Published Online: 2019-10-12


Conflict of interest: There are no conflicts of interest to be declared by the authors.


Citation Information: Turkish Journal of Biochemistry, 20180308, ISSN (Online) 1303-829X, ISSN (Print) 0250-4685, DOI: https://doi.org/10.1515/tjb-2018-0308.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in