Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

International Journal of Turbo & Jet-Engines

Hrsg. v. Sherbaum, Valery / Erenburg, Vladimir


IMPACT FACTOR 2018: 0.863

CiteScore 2018: 0.66

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.625

Online
ISSN
2191-0332
Alle Formate und Preise
Weitere Optionen …
Band 36, Heft 2

Hefte

Application of the Proper Orthogonal Decomposition Method in Analyzing Active Separation Control With Periodic Vibration Wall

Jin-Chun Wang
  • Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Xin Fu
  • Korrespondenzautor
  • Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Guo-Ping Huang
  • Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Shu-Li Hong
  • Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Yuan-Chi Zou
  • Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 27.09.2017 | DOI: https://doi.org/10.1515/tjj-2017-0031

Abstract

The proper orthogonal decomposition (POD) method is employed to analyze the unsteady flow control mechanism because it is a good approach to decouple the spatial and temporal structures of unsteady flow fields. The results showed that the main effect of the periodic excitation is reallocating the energy of each mode, and selectively strengthening or weakening certain modes. Under proper amplitude and frequency of periodic excitation, the energy in higher modes will be transferred to the first mode and the translation of the modal energy is coming from the reconstructing of spatial flow structures and the ordering of modal evolution characteristics. The best control effect will be achieved when the total energy ratio of the first mode is the highest and the excitation frequency reaches the separation vortex frequency at the same time. In order to quantitatively analyze the order degree of the unsteady flow field, the maximum Lyapunov exponent was introduced. The results showed that with the energy in higher modes transferred to the lower modes, the flow field transfers from a disordered pattern to an ordered one.

Keywords: unsteady flow control; vibration wall; flow separation; proper orthogonal decomposition; Lyapunov exponent

PACS: 2010; 47.11.-j

References

  • 1.

    Li YH, Wu Y, Zhou M, Su CB, Zhang XW, Zhu JQ. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation. Exp Fluids 2009;48:1015–23.Web of ScienceGoogle Scholar

  • 2.

    Telionis DP. Review – unsteady boundary layers, separated and attached. J Fluids Eng 1979;101:29–43.CrossrefGoogle Scholar

  • 3.

    Gadelhak M, Bushnell DM. Separation control – review. J Fluids Eng 1991;113:5–30.CrossrefGoogle Scholar

  • 4.

    Greenblatt D, Wygnanski IJ. The control of flow separation by periodic excitation. Prog Aerospace Sci 2000;36:487–545.CrossrefGoogle Scholar

  • 5.

    Lachmann GV. Boundary layer and flow control. Oxford: Pergamon Press, 1961.Google Scholar

  • 6.

    Rioual JL, Nalson PA, Hackenberg P, Tutty OR. Optimum drag balance for boundary-layer suction. J Aircr 1996;33:435–38.CrossrefGoogle Scholar

  • 7.

    Wygnanski I. Boundary layer and flow control by periodic addition of momentum, Shear Flow Control Conference 1997.Google Scholar

  • 8.

    Amitay M, Glezer A, Kibens V, Parekh DE, Smith DR. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. Aiaa J 2001;39(3):361–70.CrossrefGoogle Scholar

  • 9.

    Starikovskii A, Roupassov D, Nikipelov A, Nudnova M. Flow separation control by plasma actuator with nanosecond pulse discharge. Aiaa J 2009;47(1):168–85.CrossrefGoogle Scholar

  • 10.

    Wu XH, Wu JZ, Wu JM. Streaming effect of wall oscillation to boundary layer separation. Acta Aerodynamica Sinica 1992;10:81–9.Google Scholar

  • 11.

    Sinha S, Hyvärinen J. Flexible-wall turbulence control for drag reduction on streamlined and bluff bodies. Flow Control Conference 2008.Google Scholar

  • 12.

    Lumley JL. The structure of inhomogeneous turbulent flows. In: Atmospheric turbulence and radio wave propagation. Moscow: Nauka, 1967:166–78.Google Scholar

  • 13.

    Aubry N, Holmes P, Lumley JL, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary. J Fluid Mech 1988;192:115–73.CrossrefGoogle Scholar

  • 14.

    Emkarniadakis G. A low-dimensional model for simulating three-dimensional cylinder flow. J Fluid Mech 2002;458:181–90.Google Scholar

  • 15.

    Fan CL, Li XW. Proper orthogonal decomposition method for flow analysis of multi-element airfoil. J Shanghai Univ 2012;76–82.Google Scholar

  • 16.

    Cizmas PG, Palacios A. Proper orthogonal decomposition of turbine rotor stator interaction. J Propul Power 2003;19:268–81.CrossrefGoogle Scholar

  • 17.

    Zhu J, Huang G, Fu X, Fu Y, Yu H. Use of POD method to elucidate the physics of unsteady micro-pulsed-jet flow for boundary layer flow separation control. Proceedings of ASME Turbo Expo 2013.Google Scholar

  • 18.

    Ruelle D, Takens F. On the nature of turbulence. Communications Math Phys 1971;20:167–92.CrossrefGoogle Scholar

  • 19.

    Chatterjee A. An introduction to the proper orthogonal decomposition. Curr Sci 2000;78:171–74.Google Scholar

  • 20.

    Munir S, Siddiqui MI, Heikal M, Aziz AR, Sercey GD. Identification of dominant structures and their flow dynamics in the turbulent two-phase flow using pod technique. J Mechanical Sci Technol 2015;29:4701–10.Web of ScienceCrossrefGoogle Scholar

  • 21.

    Aubry N, Holmes P, Lumley JL. The dynamic of coherent structures in the wall region of a turbulent boundary layer. J Fluid Mech 1988;192:115–73.CrossrefGoogle Scholar

  • 22.

    Lv JH, Lu JA, Chen SX. Chaotic time series analysis and application. Wuhan: Wuhan University Press, 2002.Google Scholar

  • 23.

    Wang J, Fu X, Huang G, Hong S, Zou Y. Application of the maximum lyapunov exponent to analyze the effect on the flow separation with vibration wall. AIAA propulsion and energy forum and exposition, 2016.Google Scholar

Artikelinformationen

Erhalten: 15.08.2017

Angenommen: 05.09.2017

Online erschienen: 27.09.2017

Erschienen im Druck: 27.05.2019


This work was supported by the National Science Foundation for Young Scientists of China (51306089) and National Science Foundation of China (51176072).


Quellenangabe: International Journal of Turbo & Jet-Engines, Band 36, Heft 2, Seiten 175–184, ISSN (Online) 2191-0332, ISSN (Print) 0334-0082, DOI: https://doi.org/10.1515/tjj-2017-0031.

Zitat exportieren

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Kommentare (0)