Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Turbo & Jet-Engines

Ed. by Sherbaum, Valery / Erenburg, Vladimir


IMPACT FACTOR 2018: 0.863

CiteScore 2018: 0.66

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.625

Online
ISSN
2191-0332
See all formats and pricing
More options …
Volume 36, Issue 2

Issues

Dielectric Barrier Discharge (DBD) Plasma Actuators for Flow Control in Turbine Engines: Simulation of Flight Conditions in the Laboratory by Density Matching

David E. Ashpis / Douglas R. Thurman
Published Online: 2018-07-31 | DOI: https://doi.org/10.1515/tjj-2018-0021

Abstract

We address requirements for laboratory testing of AC Dielectric Barrier Discharge (AC-DBD) plasma actuators for active flow control in aviation gas turbine engines. The actuator performance depends on the gas discharge properties, which, in turn, depend on the pressure and temperature. It is technically challenging to simultaneously set test-chamber pressure and temperature to the flight conditions. We propose that the AC-DBD actuator performance depends mainly on the gas density, when considering ambient conditions effects. This enables greatly simplified testing at room temperature with only chamber pressure needing to be set to match the density at flight conditions. For turbine engines, we first constructed generic models of four engine thrust-classes; 300-, 150-, 50-passenger, and military fighter, and then calculated the densities along the engine at sea-level takeoff and altitude cruise conditions. The range of chamber pressures that covers all potential applications was found to be from 3 to 1256 kPa (0.03 to 12.4 atm), depending on engine-class, flight altitude, and actuator placement in the engine. The engine models are non-proprietary and can be used as reference data for evaluation requirements of other actuator types and for other purposes. We also provided examples for air vehicles applications up to 19,812 m (65,000 ft).

Keywords: DBD plasma; flow control; turbine-engine

PACS: (2010); 52.77.-j

References

  • 1.

    Gad-El Hak M. Flow control: passive, active, and reactive flow management. Cambridge University Press, Cambridge, UK, 2000. DOI:.CrossrefGoogle Scholar

  • 2.

    Greenblatt D, Wygnanski IJ, Rumsey CL. Aerodynamic Flow Control. In: Encyclopedia of Aerospace Engineering, Volume 1: Fluid Dynamics and Aerothermodynamics, Edited by Blockley R, Shyy W. John Wiley & Sons, Hoboken, NJ, USA, 2010:3–12. DOI:.CrossrefGoogle Scholar

  • 3.

    Lord WK, MacMartin DG, Tillman G. Flow control opportunities in gas turbine engines. AIAA Paper 2000–2234. 2000. DOI:.CrossrefGoogle Scholar

  • 4.

    Cattafesta LN, Sheplak M. Actuators for active flow control. Annu Rev Fluid Mechanics. 2011;43:247–72.CrossrefGoogle Scholar

  • 5.

    Moreau E. Airflow control by non-thermal plasma actuators. J Phys. D: Appl Phys. 2007;40:605–36.CrossrefGoogle Scholar

  • 6.

    Corke TC, Post ML, Orlov DM. SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog Aerospace Sci. 2007;43:193–217.CrossrefGoogle Scholar

  • 7.

    Corke TC, Post ML, Orlov DM. Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp Fluids. 2009;46:1–26.CrossrefGoogle Scholar

  • 8.

    Corke TC, Enloe CL, Wilkinson SP. Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mechanics. 2010;42:505–29.CrossrefGoogle Scholar

  • 9.

    Benard N, Moreau E. Electrical and mechanical characteristics of surface ac dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids. 2014;55:1846 (43 pp).Google Scholar

  • 10.

    Kotsonis M. Diagnostics for characterisation of plasma actuators. Meas Sci Technol. 2015;26:092001 (30pp).Google Scholar

  • 11.

    Kriegseis J, Simon B, Grundmann S. Towards in-flight applications? a review on dielectric barrier discharge-based boundary-layer control. Appl Mechanics Rev. 2016;68:020802 (41pp).Google Scholar

  • 12.

    Roupassov DV, Nikipelov AA, Nudnova MM, Starikovskii AY. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA J. 2009;47:168–85.CrossrefGoogle Scholar

  • 13.

    Starikovskiy A, Gordon S, Post M, Miles R. Barrier discharge development and thrust generation at low and high pressure conditions. AIAA Paper 2014–0329. January 2014. DOI:.CrossrefGoogle Scholar

  • 14.

    Samimy M, Adamovich I, Webb B, Kastner J, Hileman J, Keshav S, Palm P. Development and characterization of plasma actuators for high speed and reynolds number jet control. Exp Fluids. 2004;37:577–88.CrossrefGoogle Scholar

  • 15.

    Cybyk BZ, Grossman KR, Wilkerson JT, Chen J, Katz J. Single-pulse performance of the sparkjet flow control actuator. AIAA Paper 2005–0401. 2005. DOI:.CrossrefGoogle Scholar

  • 16.

    Chiatto M, De Luca L. Numerical and experimental frequency response of plasma synthetic jet actuators. AIAA Paper 2017–1884. 2017. DOI:.CrossrefGoogle Scholar

  • 17.

    Kronhaus I, Eichler S, Schein J. Schlieren characterization of gas flows generated by cathodic arcs in atmospheric pressure environment. Appl Phys Lett. 2014;104:063507 (4pp).Google Scholar

  • 18.

    Kronhaus I, Van Rossum L. Characterization of the formation process of cathodic-arc-jet in atmospheric pressure gas. AIAA Paper 2017–0159. 2017. DOI:.CrossrefGoogle Scholar

  • 19.

    Hultgren LS, Ashpis DE. Demonstration of separation delay with glow-discharge plasma actuators. AIAA Paper 2003–1025. 2003. DOI:. Accepted for publication in AIAA Journal.CrossrefGoogle Scholar

  • 20.

    List J, Byerley AR, McLaughlin TE, VanDyken RD. Using a plasma actuator to control laminar separation on a linear cascade turbine blade. AIAA Paper 2003–1026. 2003. DOI:.CrossrefGoogle Scholar

  • 21.

    Huang J, Corke TC, Thomas FO. Plasma actuators for separation control of low pressure turbine blades. AIAA J. 2006;44:51–57.CrossrefGoogle Scholar

  • 22.

    Huang J, Corke TC, Thomas FO. Unsteady plasma actuators for separation control of low-pressure turbine blades. AIAA J. 2006;44:1477–87.CrossrefGoogle Scholar

  • 23.

    Boxx I, Rivir R, Newcamp J, Woods N. Reattachment of a separated boundary layer on a flat plate in a highly adverse pressure gradient using a plasma actuator. AIAA Paper 2006–3023. June 2006. DOI:.CrossrefGoogle Scholar

  • 24.

    Burman D, Simon T, Kortshagen U, Ernie D. Separation control using plasma actuators: 2-D and edge effects in steady flow in low pressure turbines. AIAA Paper 2010–1220, January 2010. DOI:.CrossrefGoogle Scholar

  • 25.

    Burman D, Simon TW, Kortshagen U, Ernie D. Separation control using plasma actuators: steady flow in low pressure turbines. In: ASME Paper GT2011–46807. June 2011. DOI:.CrossrefGoogle Scholar

  • 26.

    Marks CR, Sondergaard R, Wolff M, Anthony R. Experimental comparison of DBD plasma actuators for low reynolds number separation control. J Turbomachinery. 2012;135:011024.CrossrefGoogle Scholar

  • 27.

    Matsunuma T, Segawa T. Effects of input voltage on flow separation control for low-pressure turbine at low reynolds number by plasma actuators. Int J Rotating Machinery. 2012;1–10. DOI:CrossrefGoogle Scholar

  • 28.

    Pescini E, Marra F, De Giorgi MG, Francioso L, Ficarella A. Investigations of the actuation effect of a single DBD plasma actuator for flow separation control under simulated low-pressure turbine blade conditions. ASME Paper GT2016–57432. June 2016. DOI:.CrossrefGoogle Scholar

  • 29.

    Morris SC, Corke TC, VanNess D, Stephens J, Douvillev T. Tip clearance control using plasma actuators. AIAA Paper 2005–782, 2005. DOI:.CrossrefGoogle Scholar

  • 30.

    VanNess DK, Corke TC, Morris SC. Turbine tip clearance flow control using plasma actuators. AIAA Paper 2006–21, 2006. DOI:.CrossrefGoogle Scholar

  • 31.

    Douville T, Stephens J, Corke T, Morris S. Turbine blade tip leakage flow control by partial squealer tip and plasma actuators. AIAA Paper 2006– 20, 2006. DOI:.CrossrefGoogle Scholar

  • 32.

    VanNess DK, Corke TC, Morris SC. Tip clearance flow visualization of a turbine blade cascade with active and passive flow control. In: ASME Paper GT2008–5070, 2008. DOI:.CrossrefGoogle Scholar

  • 33.

    VanNess DK, Corke TC, Morris SC. Plasma actuator blade tip clearance flow control in a linear turbine cascade. AIAA J Propulsion Power. 2012 May–June;28:504–16. DOI:CrossrefGoogle Scholar

  • 34.

    Matsunuma T, Segawa T. Active control of tip leakage flow for low-pressure turbine by ring-type plasma actuators. AIAA Paper 2013–2726. 2013. DOI:.CrossrefGoogle Scholar

  • 35.

    Matsunuma T, Segawa T. Applications of string-type DBD plasma actuators for flow control in turbomachineries. AIAA Paper 2014–1126. 2014. DOI:.CrossrefGoogle Scholar

  • 36.

    Saddoughi S, Bennett G, Boespflug M, Puterbaugh SL, Wadia AR. Experimental investigation of tip clearance flow in a transonic compressor with and without plasma actuators. J Turbomach. 2014;137:041008 (10pp).Google Scholar

  • 37.

    McGowan RC, Corke TC, Matlis EH, Kaszeta RW, Gold CX. Pulsed-DC plasma actuation for stall control in an axial fan. AIAA Paper 2018–1357. January 2018. DOI:.CrossrefGoogle Scholar

  • 38.

    Vo HD. Rotating stall suppression in axial compressors with casing plasma actuation. AIAA J Propulsion Power. 2010July–August;26:808–18.CrossrefGoogle Scholar

  • 39.

    Göksel B, Fischer M, Rechenberg I, Thallemer A. Elektrostatischer Plasma-Wellantrieb für Bionische Luftschiffe. In: Proceedings of the German Aerospace Congress 2005. Friedrichshafen, Germany: Deutsche Gesellschaft für Luft- und Raumfahrt. Paper No. DGLR-2005–261. 2005; 3:1853–56.Google Scholar

  • 40.

    Göksel B. b-Ionic Airfish 2008. Available at: http://www.electrofluidsystems.com/airfish/b-ionic-airfish-2008.wmv. 2008, Accessed: 12 January 2018.

  • 41.

    Sidorenko A, Budovsky A, Pushkarev A, Maslov A. Flight testing of DBD plasma separation control system. AIAA Paper 2008– 373. 2008. DOI:.CrossrefGoogle Scholar

  • 42.

    Grundmann S, Frey M, Tropea C. Unmanned aerial vehicle (UAV) with plasma actuators for separation control. AIAA Paper 2009–698, 2009. DOI:.CrossrefGoogle Scholar

  • 43.

    Duchmann A. Boundary-Layer Stabilization with Dielectric Barrier Discharge Plasmas for Free-Flight Application. Ph.D. thesis. Darmstadt, Germany: TU Darmstadt, 2012.Google Scholar

  • 44.

    Duchmann A, Simon B, Tropea C, Grundmann S. Dielectric barrier discharge plasma actuators for in-flight transition delay. AIAA J. 2014;52:358–67.CrossrefGoogle Scholar

  • 45.

    Raizer YP. Gas Discharge Physics. Springer, Berlin Heidelberg, Germany, 1991. DOI:.CrossrefGoogle Scholar

  • 46.

    Gregory JW, Enloe CL, Font GI, McLaughlin T. Force production mechanisms of a dielectric-barrier discharge plasma actuator. AIAA Paper 2007–185. 2007. DOI:.CrossrefGoogle Scholar

  • 47.

    Abe T, Takizawa Y, Sato S, Kimura N. Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator. AIAA J. 2008;46:2248–56.CrossrefGoogle Scholar

  • 48.

    Schuele CY, Corke T. Characteristics of single dielectric barrier discharge plasma actuators at sub-atmospheric pressures. In: 61st Annual Meeting of the APS/DFD. San Antonio, Texas. Nov. 2008, http://meetings.aps.org/link/BAPS.2008.DFD.ET.9 Accessed: 12 January 2018.

  • 49.

    Schuele CY. Control of Stationary Cross-Flow Modes in a Mach 3.5 Boundary Layer Using Patterned Passive and Active Roughness. PhD Dissertation. Indiana: University of Notre Dame. December 2011.Google Scholar

  • 50.

    Takagaki M, Isono S, Nagai H, Asai K. Evaluation of plasma actuator performance in martian atmosphere for applications to mars airplanes. AIAA Paper 2008–3762, 2008. DOI:.CrossrefGoogle Scholar

  • 51.

    Benard N, Balcon N, Moreau E. Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights. J Phys D: Appl Phys. 2008;41:042002 (5pp).Google Scholar

  • 52.

    Benard N, Balcon N, Moreau E. Electric wind produced by a single dielectric barrier discharge actuator operating in atmospheric flight conditions: pressure outcome. AIAA Paper 2008–3792. 2008. DOI:.CrossrefGoogle Scholar

  • 53.

    Font GI, Enloe CL, Newcomb JY, Teague AL, Vasso AR, McLaughlin TE. Effects of oxygen content on dielectric barrier discharge plasma actuator behavior. AIAA J. 2011;49:1366–73.CrossrefGoogle Scholar

  • 54.

    Soni J, Roy S. Low pressure characterization of dielectric barrier discharge actuators. Appl Phys Lett. 2013;102:112908 (5 pp.).Google Scholar

  • 55.

    Friz P, Rovey J. The effects of electrode size and configuration on plasma actuator thrust and effectiveness at low pressure. Int J Flow Control. 2014;6:75–86.CrossrefGoogle Scholar

  • 56.

    Starikovskiy A, Pancheshnyi S. Dielectric barrier discharge development at low and moderate pressure conditions. In: AIAA Paper 2013–0902, 2013. DOI:.CrossrefGoogle Scholar

  • 57.

    Benard N, Moreau E. Effects of altitude on the electromechanical characteristics of dielectric barrier discharge plasma actuators. AIAA Paper 2010–4633, 2010. DOI:.CrossrefGoogle Scholar

  • 58.

    Benard N, Bayoda KD, Aba’a Ndong AC, Moreau E. A nanosecond surface dielectric barrier discharge operating under altitude conditions for aeronautics applications. IEEE Trans Plasma Sci. 2016;44:774–84.CrossrefGoogle Scholar

  • 59.

    Valerioti JA. Pressure Dependence of Plasma Actuated Flow Control. MS Thesis. Indiana: University of Notre Dame, 2010.Google Scholar

  • 60.

    Valerioti J, Corke T. Pressure dependence of dielectric barrier discharge plasma flow actuators. AIAA J. July 2012;50:1490–502.CrossrefGoogle Scholar

  • 61.

    Lytle JK. The numerical propulsion simulation: an overview. In: NASA/TM—2000–209915. 2000.Google Scholar

  • 62.

    Jones SM. An introduction to thermodynamic performance analysis of aircraft gas turbine engine cycles using the numerical propulsion system simulation code. NASA/TM–2007–214690. 2007.Google Scholar

  • 63.

    Numerical Propulsion System Simulation (NPSS) Consortium. Availabe at: http://www.swri.org/npss/. Accessed: 12 January, 2018]

  • 64.

    Tong MT, Naylor BA. An object-oriented computer code for aircraft engine weight estimation. ASME Paper GT2008–50062, 2008. DOI:.CrossrefGoogle Scholar

  • 65.

    Ashpis DE, Thurman DR. DBD plasma actuators for flow control in air vehicles and jet engines—simulation of flight conditions in test chambers by density matching. In: NASA/TM–2011–217006 Rev1. July, 2011.Google Scholar

About the article

Received: 2018-06-24

Accepted: 2018-07-12

Published Online: 2018-07-31

Published in Print: 2019-05-27


Citation Information: International Journal of Turbo & Jet-Engines, Volume 36, Issue 2, Pages 157–173, ISSN (Online) 2191-0332, ISSN (Print) 0334-0082, DOI: https://doi.org/10.1515/tjj-2018-0021.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in