Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Turbo & Jet-Engines

Ed. by Sherbaum, Valery / Erenburg, Vladimir

IMPACT FACTOR 2018: 0.863

CiteScore 2018: 0.66

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.625

See all formats and pricing
More options …
Volume 36, Issue 3


Advanced Exergy Analysis of a Turbofan Engine (TFE): Splitting Exergy Destruction into Unavoidable/Avoidable and Endogenous/Exogenous

Ozgur Balli
Published Online: 2017-01-24 | DOI: https://doi.org/10.1515/tjj-2016-0074


A conventional and advanced exergy analysis of a turbofan engine is presented in this paper. In this framework, the main exergy parameters of the engine components are introduced while the exergy destruction rates within the engine components are split into endogenous/exogenous and avoidable/unavoidable parts. Also, the mutual interdependencies among the components of the engine and realistic improvement potentials depending on operating conditions are acquired through the analysis. As a result of the study, the exergy efficiency values of the engine are determined to be 25.7 % for actual condition, 27.55 % for unavoidable condition and 30.54 % for theoretical contion, repectively. The system has low improvement potential because the unavoidable exergy destruction rate is 90 %. The relationships between the components are relatively weak since the endogenous exergy destruction is 73 %. Finally, it may be concluded that the low pressure compressor, the high pressure compressor, the fan, the low pressure compressor, the high pressure compressor and the combustion chamber of the engine should be focused on according to the results obtained.

Keywords: aviation; turbofan engine; exegy analysis; advanced exergy analysis

PACS: Air transportation; 89.40.Dd; Irreversible thermodynamics; 05.70.Ln; Reaction turbines; 88.60.kt; Energy conservation in classical mechanics; 45.20.dh; Thermal analysis; 81.70.Pg; Thermodynamic considerations; 88.05.De


  • 1.

    Whitelegg J, Cambridge H. Aviation and Sustainability. ISBN: 9188714918. Stokholm Environment Institute. Lilla Nygaton 1, box 2142, SE-10314, Stockholm. July 2004.Google Scholar

  • 2.

    Rosen MA. Assessing energy technologies and environmental impacts with the principles of thermodynamics. Appl Energy 2002;72:427–41.CrossrefGoogle Scholar

  • 3.

    Turan O. Some exergetic measures of a JT8D turbofan engine. J Autom Control Eng 2014;2(2):110–14.CrossrefGoogle Scholar

  • 4.

    Erbay Z, Hepbasli A. Application of conventional and advanced exergy analyses to evaluate the performance of a ground-source heat pump (GSHP) dryer used in food drying. Energy Convers Manage 2014;78:499–507.CrossrefGoogle Scholar

  • 5.

    Koch C, Cziesla F, Tsatsaronis G. Optimization of combined cycle power plants using evolutionary algorithms. Chem Eng Process 2007;46:1151–9.CrossrefGoogle Scholar

  • 6.

    Kelly S, Tsatsaronis G, Morosuk T. Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 2009;34:384–91.CrossrefGoogle Scholar

  • 7.

    Morosuk T, Tsatsaronis G. Advanced exergy analysis for chemically reacting systems–application to a simple open gas-turbine system. Int J Therm 2009;12(3):105–11.Google Scholar

  • 8.

    Morosuk T, Tsatsaronis G. Advanced exergetic evaluation of refrigeration machines using different working fluids. Energy 2009;34:2248–58.CrossrefGoogle Scholar

  • 9.

    Petrakopoulou F, Tsatsaronis G, Morosuk T, Carassai A. Conventional and advanced exergetic analyses applied to a combined cycle power Plant. Energy 2012;4:146–52.Google Scholar

  • 10.

    Söhret Y, Ekici S, Altuntas O, Hepbasli A, Karakoc TH. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: a key review. Prog Aerosp Sci 2016;83:57–69.CrossrefGoogle Scholar

  • 11.

    Balli O, Aras H, Aras N, Hepbasli A. Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE). Int J Exergy 2008;5(5/6):567–81.Google Scholar

  • 12.

    Ehyaei MA, Anjiridezfuli A, Rosen MA. Exergetic analysis of an aircraft turbojet engine with an afterburner. Therm Sci 2013;17(4):1181–94.CrossrefGoogle Scholar

  • 13.

    Balli O. Afterburning effect on the energetic and exergetic performance of an experimental turbojet engine (TJE). Int J Exergy 2014;14(2):212–43.CrossrefGoogle Scholar

  • 14.

    Ekici S, Sohret Y, Coban K, Altuntas O, Karakoc TH. Performance evaluation of an experimental turbojet engine. Int J Turbo Jet Eng 2016. ISSN (online):2191-0332, ISSN (Print): 0334–0082. DOI:10.1515/tjj–2016–0016.Google Scholar

  • 15.

    Ekici S, Sohret Y, Coban K, Altuntas O, Karakoc TH. Sustainability metrics of a small scale turbojet engine. Int I Turbo Jet Eng 2016. ISSN (online):2191-0332, ISSN (Print): 0334–0082. DOI:10.1515/tjj–2016–0036.Google Scholar

  • 16.

    Yucer CT. Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method. Energy 2016;111:251–9.CrossrefGoogle Scholar

  • 17.

    Balli O. Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Appl Therm Eng 2017;111:152–69.Google Scholar

  • 18.

    Aydin H, Turan O, Karakoc TH, Midilli A. Component-based exergetic measures of the an experimental turboprop/turboshaft engine for propeller aircrafts and helicopters. Int J Exergy 2012;11(3):322–48.CrossrefGoogle Scholar

  • 19.

    Aydin H, Turan O, Midilli A, Karakoc TH. Exergetic and exergo-economic analysis of a turboprop engine: a case study for CT7-9C. Int J Exergy 2012;11(1):69–82.CrossrefGoogle Scholar

  • 20.

    Balli O, Hepbasli A. Energetic and exergetic analyses of T56 turboprop engine. Energy Convers Manag 2013;73:106–20.CrossrefGoogle Scholar

  • 21.

    Atılgan R, Turan O, Altuntas O, Aydın H, Synylo K. Environmental impact assessment of a turboprop engine with the aid of exergy. Energy 2013;58:664–71.CrossrefGoogle Scholar

  • 22.

    Aydin H, Turan O, Karakoc TH, Midilli A. Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight. Energy 2013;58:550–60.CrossrefGoogle Scholar

  • 23.

    Balli O, Hepbasli A. Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy 2014;64:582–600.CrossrefGoogle Scholar

  • 24.

    Baklacioglu T, Turan O, Aydin H. Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks. Energy 2015;86:709–21.CrossrefGoogle Scholar

  • 25.

    Sohret Y, Sogut MZ, Karakoc TH, Turan O. Customised application of exergy analysis method to PW120A turboprop engine for performance evaluation. Int. J. Exergy 2016;20(1):48–65.CrossrefGoogle Scholar

  • 26.

    Ekici S, Altuntas O, Acikkalp E, Sogut MZ, Karakoc TH. Assessment of thermodynamic performance and exergetic-sustainability of turboprop en gine using mixture of kerosene and methanol. Int. J. Exergy 2016;19(3):295–314.CrossrefGoogle Scholar

  • 27.

    Turgut ET, Karakoc TH, Hepbasli A. Exergetic analysis of an aircraft turbofan engine. Int J Energy Res 2007;31(14):1383–97.CrossrefGoogle Scholar

  • 28.

    Struchtrup H, Elfring GJ. Externallossesinhigh-bypassturbofanairengines. Int. J.Exergy 2008;5:400–12.Google Scholar

  • 29.

    Turgut ET, Karakoc TH, Hepbasli A, Rosen MA. Exergy analysis of a turbofan aircraft engine. Int J Exergy 2009;6(2):181–99.CrossrefGoogle Scholar

  • 30.

    Turgut ET, Karakoc TH, Hepbasli A. Exergoeconomic analysis of an aircraft turbofan engine. Int J Exergy 2009;6(3):277–94.CrossrefGoogle Scholar

  • 31.

    Tona C, Raviolo PA, Pellegrini LF, Oliveria JrS. Exergy and thermodynamic analysis of a turbofan engine during a typical commercial flight. Energy 2010;35(2):952–9.CrossrefGoogle Scholar

  • 32.

    Turan O. Effect of reference altitudes for a turbofan engine with the aid of specific-exergy based method. Int J Exergy 2012;11:252–70.CrossrefGoogle Scholar

  • 33.

    Hassan HZ. Evaluation of the local exerg ydestruction in the intake and fan of a turbofan engine. Energy 2013;63:245–51.CrossrefGoogle Scholar

  • 34.

    Turan O, Aydin H, Karakoc TH, Midilli A. Some exergetic measures of a JT8D turbofan engine. J Autom Control Eng 2014;2:110–14.CrossrefGoogle Scholar

  • 35.

    Tai VC, See PC, Mares C. Optimisation of energy and exergy of turbofan engines using genetic algorithms. Int J Sustainable Aviat 2014;1:25–42.CrossrefGoogle Scholar

  • 36.

    Aydin H, Turan O, Karakoc TH, Midilli A. Sustainability assessment of PW6000 turbofan engine: an exergeti capproach. Int J Exergy 2014;14:388–412.CrossrefGoogle Scholar

  • 37.

    Sohret Y, Dinc A, Karakoc TH. Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance emission. Energy 2015;93:716–29.CrossrefGoogle Scholar

  • 38.

    Aydin H, Turan O, Karakoc TH, Midilli A. Exergetic sustainability indicators as a tool in commercial aircraft: a case study for a turbofan engine. Int J Green Energy 2015;12:28–40.CrossrefGoogle Scholar

  • 39.

    Sohret Y, Acikkalp E, Hepbasli A, Karakoc TH. Advanced exergy analysis of an aircraft gas türbine engine: splitting exergy destructions into parts. Energy 2015;90:1219–28.CrossrefGoogle Scholar

  • 40.

    Turan O. An exergy way to quantify sustainability metrics for a high bypass turbofan engine. Energy 2016;86:722–36.Google Scholar

  • 41.

    Kaya N, Turan O, Midilli A, Karakoc TH. Exergetic sustainability improve ment potentials of a hydrogen fueled turbofan engine UAV by heating its fuel with exhaust gasses. Int J Hydrogen Energy 2016;41(19):8307–22.CrossrefGoogle Scholar

  • 42.

    Altuntas O, Karakoc TH, Hepbasli A. Exergoenvironmental analysis of pistonprop aircrafts. Int J Exergy 2012;10(3):290–8.CrossrefGoogle Scholar

  • 43.

    Altuntas O, Karakoc TH, Hepbasli A. Exergetic, exergoeconomic and sustainability assessment of piston-prop aircraft engine. Int J Therm Sci Technol 2012;32:133–43.Google Scholar

  • 44.

    Bill G. Jane’s Aero-Engines. ISBN: 0710614055. Jane’s Information Group Limited, Sential House, 163, Brighton Road, Coulsdon, Surrey CR5 2NH, Printed Pear Tree Image Processing, Stevenage, Herts. UK. 1996.Google Scholar

  • 45.

    Cengel YA, Boles MA. Thermodynamics: an engineering approach, 8th ed. 2 Penn Plaza, New York, NY 10121: McGraw-Hill Education, 2014. ISBN-978-0-07-339817-4.Google Scholar

  • 46.

    Kotas TJ. The exergy method of thermal plant analysis, Reprint ed. Malabar: Kieger, 1995.Google Scholar

  • 47.

    Rakopoulos CD, Giakoumis EG. Second-law analyses applied to internal combustion engines operations. Prog Energy Combust Sci 2006;32:2–47.CrossrefGoogle Scholar

  • 48.

    Vatani A, Mehrpooya M, Palizdar A. Advanced exergetic analysis of five natural gas liquefaction processes. Energy Convers Manage 2014;78:720–37.CrossrefGoogle Scholar

  • 49.

    Morosuk T, Tsatsaronis G. A new approach to the exergy analysis of absorption refrigeration machines. Energy 2008;33:890–907.CrossrefGoogle Scholar

  • 51.

    Torres C, Valero A, Serra L, Royo J. Structural theory and thermoeconomic diagnosis: part I. On malfunction and dysfunction analysis. Energy Convers Manage 2002;43:1503–18.Google Scholar

  • 52.

    Tsatsaronis G, Morosuk T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas. Energy 2010;35:820–9.CrossrefGoogle Scholar

  • 53.

    Morosuk T, Tsatsaronis G. Comparative evaluation of LNG-based cogeneration systems using advanced exergetic analysis. Energy 2011;36(6):3771–8.Google Scholar

  • 54.

    Morosuk T, Tsatsaronis G, Zhang C. Conventional thermodynamic and advanced exergetic analysis of a refrigeration machine using a Voorhees’ compression process. Energy Convers Manage 2012;60:143–51.CrossrefGoogle Scholar

  • 55.

    Tsatsaronis G, Morosuk T. Advanced exergetic analysis of a refrigeration system for liquefaction of natural gas. Int J Energy Environ Eng 2010;1:1–17.Google Scholar

  • 56.

    Zh W, Zhang B, Sh Wu, Chen Q, Tsatsaronis G. Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs. Energy 2012;42:424–33.CrossrefGoogle Scholar

  • 57.

    Karimi MN, Kamboj SK. Exergy destruction and chemical irreversibilities during combustion in spark-ignition engine using oxygenated and hydrocarbon fuels. Int J Mech Ind Eng 2012;2(3):7–11.Google Scholar

  • 58.

    Tsatsaronis G, Morosuk T, Koch D, Sorgenfrei M. Understanding the thermodynamic inefficiencies in combustion processes. Energy 2013;62:3–11.CrossrefGoogle Scholar

About the article

Received: 2016-12-07

Accepted: 2016-12-28

Published Online: 2017-01-24

Published in Print: 2019-08-27

Any funding source does not used for this paper.

Citation Information: International Journal of Turbo & Jet-Engines, Volume 36, Issue 3, Pages 305–327, ISSN (Online) 2191-0332, ISSN (Print) 0334-0082, DOI: https://doi.org/10.1515/tjj-2016-0074.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zeyu Dong, Dapeng Li, Zhenguo Wang, and Mingbo Sun
Acta Astronautica, 2018

Comments (0)

Please log in or register to comment.
Log in