[1] D. A. Brannan and J. G. Clunie (Editors), Aspects of contemporary complex analysis (Pro-
ceedings of the NATO Advanced Study Institute held at the University of Durham, Durham;
July 1{20, 1979), Academic Press, New York and London, 1980.
Google Scholar

[2] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band
259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
Google Scholar

[3] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24
(2011), 1569{1573.
CrossrefGoogle Scholar

[4] A. W. Goodman, Univalent functions, Vols. 1 and 2, Mariner Publishing Company, Tampa,
Florida, 1983.
Google Scholar

[5] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent func-
tions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20 (2012), 179{182.
Google Scholar

[6] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22
(4) (2012), 15{26.
Google Scholar

[7] J. G. Krzy_z, R. J. Libera and E. J. Z lotkiewicz, Coefficients of inverses of regular starlike
functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 33 (1979), 103{110.
Google Scholar

[8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18
(1967), 63{68.
CrossrefGoogle Scholar

[9] W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer.
Math. Soc. 105 (1989), 324{329.
CrossrefGoogle Scholar

[10] C. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962),
259{269.
Google Scholar

[11] H. M. Srivastava, Some inequalities and other results associated with certain subclasses of uni-
valent and bi-univalent analytic functions, in Nonlinear Analysis: Stability; Approximation;
and Inequalities (Panos M. Pardalos, Pando G. Georgiev and Hari M. Srivastava, Editors.),
Springer Series on Optimization and Its Applications, Vol. 68, Springer-Verlag, Berlin, Hei-
delberg and New York, 2012, pp. 607{630.
Google Scholar

[12] H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general
subclass of analytic and bi-univalent functions, Filomat 27 (2013), 831{842.
Google Scholar

[13] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-
univalent functions, Appl. Math. Lett. 23 (2010), 1188{1192.
CrossrefGoogle Scholar

[14] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-
univalent functions associated with the Hohlov operator, Global J. Math. Anal. 1 (2) (2013),
67{73.
Google Scholar

[15] Q.-H. Xu, H. M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex
functions, Appl. Math. Lett. 24 (2011), 396-401.
CrossrefGoogle Scholar

[16] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of
analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990{994.
Web of ScienceCrossrefGoogle Scholar

[17] Q.-H. Xu, H.-G. Xiao, and H. M. Srivastava, A certain general subclass of analytic and bi-
univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218
(2012), 11461{11465.
Web of ScienceCrossrefGoogle Scholar

[18] Q.-H. Xu, C.-B. Lv and H. M. Srivastava, Coefficient estimates for the inverses of a certain
general class of spirallike functions, Appl. Math. Comput. 219 (2013), 7000-7011.
CrossrefWeb of ScienceGoogle Scholar

## Comments (0)