[1] J. Su An, On functional inequalities associated with Jordan-von Neumann type functional
equations, Commun. Korean Math. Soc., 23 3 (2008), 371-376.
Google Scholar

[2] Y.-S. Cho and K.-W. Jun, The stability of functional inequalities with additive mappings,
Bull. Korean Math. Soc., 46 1 (2009), 11-23.
Google Scholar

[3] S.-C. Chung, S.-B. Lee and W.-G. Park, On the stability of an additive functional inequality,
Int. Journal of Math. Anal., 6 53 (2012), 2647-2651.
Google Scholar

[4] A. Ebadian, N. Ghobadipour, Th. M. Rassias and M. E. Gorjdi, Functional inequalities
associated with Cauchy additive functional equation in non-Archimedean spaces, Disc. Dyn.
Nat. Soc., 2011, Article ID 929824, 14 pages.
Web of ScienceGoogle Scholar

[5] H. Drygas, Quasi-inner products and their applications, in: A.K. Gupta (Ed.), Advances in
Multivariate Statistical Analysis, D. Reidel Publishing Co., 1987, pp. 1330.
Google Scholar

[6] B. R. Ebanks, Pl. Kannappan and P. K. Sahoo, A common generalization of functional equa-
tions characterizing normed and quasi-inner product spaces, Canad. Math. Bull., 35 (3) (1992),
321-327.
CrossrefGoogle Scholar

[7] E. Elqorachi, Y. Manar and Th. M. Rassias, Hyers-Ulam stability of the quadratic functional
equation, Functional Equations in Mathematical Analysis, Springer optimization and its applications,
V52 (2012), 97-105.
Google Scholar

[8] V. A. Faiziev and P. K. Sahoo, On Drygas functional equation on groups, Int. J. Appl. Math.
Stat., 7 (2007), 59-69.
Google Scholar

[9] A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math.,
62 (2001), 303-309.
Google Scholar

[10] H.-M. Kim, J. Lee and E. Son, Approximate functional inequalities by additive mappings, J.
Math. Ineq., 6 3 (2012), 461-471.
CrossrefGoogle Scholar

[11] H.-M. Kim, S.-Y. Kang and I.-S. Chang, On functional inequalities originating from module
Jordan left derivations, J. Ineq. Appl., 2008, Article ID 278505, 9 pages.
Google Scholar

[12] Y. H. Kwon, H. M. Lee, J. S. Sim, J. Yang and C. Park, Jordan-von Neumann type functional
inequalities, J. Chungcheong Math. Soc., 20 3, September 2007.
Google Scholar

[13] Gy. Maksa and P. Volkmann, Caracterization of group homomorphisms having values in an
inner product space, Publ. Math., 56 (2000), 197-200.
Google Scholar

[14] W.-G. Park, Hyers-Ulam stability of an additive functional inequality, Int. Journal of Math.
Anal., 6 14 (2012), 681-686.
Google Scholar

[15] W.-G. Park and M. H. Han, Stability of an additive functional inequality with the fixed point
alternative, Int. J. Pure Appl. Math., 77 3 (2012), 403-411.
Google Scholar

[16] C. Park, J. Su An and F. Moradlou, Additive functional inequalities in Banach modules, J.
Ineq. Appl., 2008, Article ID 592504, 10 pages.
Google Scholar

[17] C. Park and J. R. Lee, Comment on "Functional inequalities associated with Jordan-von Neu-
mann type additive functional equations", J. Ineq. Appl., 2012, 9 pages.
CrossrefGoogle Scholar

[18] C. Park, Y. S. Cho and M.-H. Han, Functional inequalities associated with Jordan-von
Neumann-type additive functional equations, J. Ineq. Appl., 2007, Article ID 41820, 13 pages.
Google Scholar

[19] J. Ratz, On inequality associated with the Jordan-von Neumann functional equation, Aequationes
Math., 54 (2003), 191-200.
Google Scholar

[20] J. Roh and I.-S. Chang, Functional inequalities associated with additive mappings, Abs. Appl.
Anal., 2008, Article ID 136592, 11 pages.
Google Scholar

[21] H. Stetkr, Functional equations on abelian groups with involution, II, Aequationes Math.,
V55 (1998), 227-240.
Google Scholar

[22] Gy. Szabo, Some functional equations related to quadratic functions, Glasnik Math., 38
(1983), 107-118.
Google Scholar

[23] P. Volkmann, Pour une fonction reelle f l'inequation jf(x)+f(y)j jf(x+y)j et l'equation de
Cauchy sont equivalentes, Proc. of the Twenty-third International Symposium on Functional
Equations (Gargnano, Italy, 1985), Centre for Information Theory, Faculty of Mathematics,
University of Waterloo, Waterloo, Ontario, Canada, 43.
Google Scholar

## Comments (0)