[1] M. Belmekki, Juan J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlin-
ear fractional differential equation, Boundary Value Problems, 2009(2009), Article ID 324561,
doi:10.1155/2009/324561.
CrossrefGoogle Scholar

[2] J. J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler
functions, Applied Mathematics Letters, 23(2010)1248-1251.
Google Scholar

[3] J. J. Nieto, Comparison results for periodic boundary value problems of fractional differential
equations, Fractional Differential Equations, 1(2011)99-104.
Google Scholar

[4] Z. Wei, W. Dong, J. Che, Periodic boundary value problems for fractional differential equations
involving a Riemann-Liouville fractional derivative, Nonlinear Analysis: Theory, Methods and
Applications, 73(2010)3232-3238.
Google Scholar

[5] Z.Wei, W. Dog, Periodic boundary value problems for Riemann-Liouville fractional differential
equations, Electronic Journal of Qualitative Theory of Differential Equations, 87(2011)1-13.
Google Scholar

[6] A. A. Kilbas, and J.J. Trujillo, Differential equations of fractional order: methods, results and
problems-I, Applicable Analysis, 78(2001)153{192.
Google Scholar

[7] A. Arara, M. Benchohra, N. Hamidi, and J. Nieto, Fractional order differential equations on
an unbounded domain, Nonlinear Analysis, 72(2010)580-586.
Google Scholar

[8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of frational differential
equations, Elsevier Science B. V. Amsterdam, 2006.
Google Scholar

[9] S. Z. Rida, H.M. El-Sherbiny, and A. Arafa, On the solution of the fractional nonlinear
Schrodinger equation, Physics Letters A, 372(2008)553-558.
Google Scholar

[10] A. M. Nakhushev, The Sturm-Liouville problem for a second order ordinary differential equa-
tions with fractional derivatives in the lower terms, Dokl. Akad. Nauk SSSR, 234(1977)308-311.
Google Scholar

[11] S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation,
J. Math. Anal. Appl. 252(2000)804{812.
Google Scholar

[12] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear frac-
tional differential equation, Electronic Journal of Qualitative Theory of Differential Equations,
3(2008)1-11.
Google Scholar

[13] R. Dehghant and K. Ghanbari, Triple positive solutions for boundary value problem of a non-
linear fractional differential equation, Bulletin of the Iranian Mathematical Society, 33(2007)1-
14.
Google Scholar

[14] Y. Liu, Positive solutions for singular FDES, U.P.B. Sci. Series A, 73(2011)89-100.
Google Scholar

[15] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential
equation, Electron. J. Diff. Eqns. 36(2006)1-12.
Google Scholar

[16] Y. Zhao, S. Sun, Z. Han, M. Zhang, Positive solutions for boundary value problems of nonlinear
fractional differential equations, Applied Mathematics and Computation, 217(2011)6950-6958.
Google Scholar

[17] M. Benchohra, J. Graef, S. Hamani, Existence results for boundary value problems with non-
linear frational differential equations, Applicable Analysis, 87(2008)851-863.
Web of ScienceGoogle Scholar

[18] X. Wang, C. Bai, Periodic boundary value problems for nonlinear impulsive fractional differen-
tial equations, Electronic Journal of Qualitative Theory and Differential Equations, 3(2011)1-
13.
Google Scholar

[19] J. Mawhin, Topological degree methods in nonlinear boundary value problems, in: NSFCBMS
Regional Conference Series in Math., American Math. Soc. Providence, RI, 1979.
Google Scholar

[20] G. L. Karakostas, Positive solutions for the Φ-Laplacian when Φ is a sup-multiplicative-like
function, Electron. J. Diff. Eqns., Vol. 68(2004)1-12.
Google Scholar

[21] K. S. Miller, S. G. Samko, Completely monotonic functions, Integr. Transf. Spec. Funct.,
12(2001)389-402.
CrossrefGoogle Scholar

[22] M. Belmekki, J. Nieto, R. Rodrguez-Lopez, Existence of solution to a periodic boundary value
problem for a nonlinear impulsive fractional differential equation, Electron. J. Qual. Theory
Differ. Equ. 2014, No. 16, 1-27.
Google Scholar

## Comments (0)