Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Tbilisi Mathematical Journal

Editor-in-Chief: Inassaridze, Hvedri

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.14

Open Access
Online
ISSN
1512-0139
See all formats and pricing
More options …

New results on the existence of solutions of boundary value problems for singular fractional differential systems with impulse effects

Yuji Liu
  • Corresponding author
  • Department of Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, P.R.China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-23 | DOI: https://doi.org/10.1515/tmj-2015-0003

Abstract

Results on the existence of solutions to a new class of impulsive singular fractional differential systems with multiple base points are established. The assumptions imposed on the nonlinear- ities, see ((C) and (D) in Theorem 3.1), are weaker than known ones, (i.e., (A) in Introduction section). The analysis relies on the well known fixed point theorems. An example is given to illustrate the efficiency of the main theorems. The investigation shows that these results and methods are helpful for study in the nonlinear area and the numerical simulation, especially for study in the the numerical solution of a fractional differential equation with multiple base points with or without impulse effects. A section "Conclusions" is given with future work research directions.

Keywords: Singular fractional differential system; impulsive boundary value problem; Riemann-Liouville fractional differen- tial equation with multiple base points; fixed point theorem.

References

  • [1] M. Belmekki, Juan J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlin- ear fractional differential equation, Boundary Value Problems, 2009(2009), Article ID 324561, doi:10.1155/2009/324561. CrossrefGoogle Scholar

  • [2] J. J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Applied Mathematics Letters, 23(2010)1248-1251. Google Scholar

  • [3] J. J. Nieto, Comparison results for periodic boundary value problems of fractional differential equations, Fractional Differential Equations, 1(2011)99-104. Google Scholar

  • [4] Z. Wei, W. Dong, J. Che, Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, Nonlinear Analysis: Theory, Methods and Applications, 73(2010)3232-3238. Google Scholar

  • [5] Z.Wei, W. Dog, Periodic boundary value problems for Riemann-Liouville fractional differential equations, Electronic Journal of Qualitative Theory of Differential Equations, 87(2011)1-13. Google Scholar

  • [6] A. A. Kilbas, and J.J. Trujillo, Differential equations of fractional order: methods, results and problems-I, Applicable Analysis, 78(2001)153{192. Google Scholar

  • [7] A. Arara, M. Benchohra, N. Hamidi, and J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Analysis, 72(2010)580-586. Google Scholar

  • [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of frational differential equations, Elsevier Science B. V. Amsterdam, 2006. Google Scholar

  • [9] S. Z. Rida, H.M. El-Sherbiny, and A. Arafa, On the solution of the fractional nonlinear Schrodinger equation, Physics Letters A, 372(2008)553-558. Google Scholar

  • [10] A. M. Nakhushev, The Sturm-Liouville problem for a second order ordinary differential equa- tions with fractional derivatives in the lower terms, Dokl. Akad. Nauk SSSR, 234(1977)308-311. Google Scholar

  • [11] S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl. 252(2000)804{812. Google Scholar

  • [12] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear frac- tional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, 3(2008)1-11. Google Scholar

  • [13] R. Dehghant and K. Ghanbari, Triple positive solutions for boundary value problem of a non- linear fractional differential equation, Bulletin of the Iranian Mathematical Society, 33(2007)1- 14. Google Scholar

  • [14] Y. Liu, Positive solutions for singular FDES, U.P.B. Sci. Series A, 73(2011)89-100. Google Scholar

  • [15] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equation, Electron. J. Diff. Eqns. 36(2006)1-12. Google Scholar

  • [16] Y. Zhao, S. Sun, Z. Han, M. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Applied Mathematics and Computation, 217(2011)6950-6958. Google Scholar

  • [17] M. Benchohra, J. Graef, S. Hamani, Existence results for boundary value problems with non- linear frational differential equations, Applicable Analysis, 87(2008)851-863. Web of ScienceGoogle Scholar

  • [18] X. Wang, C. Bai, Periodic boundary value problems for nonlinear impulsive fractional differen- tial equations, Electronic Journal of Qualitative Theory and Differential Equations, 3(2011)1- 13. Google Scholar

  • [19] J. Mawhin, Topological degree methods in nonlinear boundary value problems, in: NSFCBMS Regional Conference Series in Math., American Math. Soc. Providence, RI, 1979. Google Scholar

  • [20] G. L. Karakostas, Positive solutions for the Φ-Laplacian when Φ is a sup-multiplicative-like function, Electron. J. Diff. Eqns., Vol. 68(2004)1-12. Google Scholar

  • [21] K. S. Miller, S. G. Samko, Completely monotonic functions, Integr. Transf. Spec. Funct., 12(2001)389-402. CrossrefGoogle Scholar

  • [22] M. Belmekki, J. Nieto, R. Rodrguez-Lopez, Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 2014, No. 16, 1-27. Google Scholar

About the article

Published Online: 2015-02-23


Citation Information: Tbilisi Mathematical Journal, Volume 8, Issue 2, ISSN (Online) 1512-0139, DOI: https://doi.org/10.1515/tmj-2015-0003.

Export Citation

© 2015 Yuji Liu. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in