[1] A. Alotaibi, M. Mursaleen and M. A. Alghamdi, Invariant and absolute invariant means of
double sequences, J. Funct. Spaces Appl. Art. ID 465364, 9 pp., 2012. MR2923802
Web of ScienceGoogle Scholar

[2] D. Burton and J. Coleman, Quasi-Cauchy sequences, Amer. Math. Monthly, 117 (4), 328-333,
2010. MR 2011c:40004
Google Scholar

[3] H. Cakalli, Forward continuity, J. Comput. Anal. Appl. 13 (2), 225-230, 2011. MR 2012c:26004
Google Scholar

[4] D. Djurcic, Ljubisa D. R. Kocinac and M. R. Zizovic, Double sequences and selections,
Abstr. Appl. Anal. Hindawi Publ. Corp., New York, Article Number: 497594, 2012. DOI:
10.1155/2012/497594
CrossrefGoogle Scholar

[5] H. Dutta, A Characterization of the class of statistically pre-Cauchy double sequences of fuzzy
numbers, Appl. Math. Inf. Sci. 7 (4), 1437-1440, 2013.
CrossrefGoogle Scholar

[6] M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di
Palermo, 2 (2), 1-74, 1906
Google Scholar

[7] H. J. Hamilton, Transformations of multiple sequences, Duke Math. Jour. 2 (1), 29-60, 1936.
MR1545904
CrossrefGoogle Scholar

[8] G. H. Hardy, On the convergence of certain multiple series, Proc. London Math. Soc., 19 s2-1
(1), 124-128, 1904. MR 1576764
CrossrefGoogle Scholar

[9] M. Mursaleen and S. A. Mohiuddine, Banach limit and some new spaces of double sequences,
Turkish J. Math. 36 (1), 121-130, 2012. MR 2012m:46012
Google Scholar

[10] Richard F. Patterson, Four dimensional matrix characterization P-convergence fields of
summability methods, Appl. Math. Comput. 219 (12), 6783-6791, 2013.
Web of ScienceGoogle Scholar

[11] Richard F. Patterson, A theorem on entire four dimensional summability methods, Appl. Math.
Comput. 219 (14), 7777-7782, 2013. DOI: 10.1016/j.amc.2013.02.002
Web of ScienceCrossrefGoogle Scholar

[12] Richard F. Patterson, Analogues of some fundamental theorems of summability theory, Inter-
nat. J. Math. & Math. Sci. 23 (1), 1-9, 2000. MR 2001d:40006a
Google Scholar

[13] Richard F. Patterson, RH-regular transformations which sums a given double sequence, Filo-
mat, 27 (4), 625-627, 2013. DOI: 10.2298/FIL1304625P
CrossrefGoogle Scholar

[14] Richard F. Patterson and E. Savas, Asymptotic equivalence of double sequences, Hacet. J.
Math. Stat. 41 (4), 487-497, 2012.
Google Scholar

[15] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Mathematische Annalen,
53 (3), 289-321, 1900. MR 1511092
CrossrefGoogle Scholar

[16] G. M. Robison, Divergent double sequences and series, Amer. Math. Soc. Trans. 28 (1), 50-73,
1926. MR1501332
CrossrefGoogle Scholar

## Comments (0)