Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Tbilisi Mathematical Journal

Editor-in-Chief: Inassaridze, Hvedri

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.14

Open Access
Online
ISSN
1512-0139
See all formats and pricing
More options …

An efficient computational method based on the hat functions for solving fractional optimal control problems

M. H. Heydari
  • The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran.
  • The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. R. Hooshmandasl
  • The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran.
  • The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Shakiba
  • Faculty of Mathematics, Yazd University, Yazd, Iran.
  • The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Cattani
Published Online: 2016-02-26 | DOI: https://doi.org/10.1515/tmj-2016-0007

Abstract

In this paper, an efficient and accurate computational method based on the hat functions (HFs) is proposed for solving a class of fractional optimal control problems (FOCPs). In the proposed method, the fractional optimal control problem under consideration is reduced to a system of nonlinear algebraic equations which can be simply solved. To this end, the fractional state and control variables are expanded by the HFs with unknown coefficients. Then, the operational matrix of fractional integration of the HFs with some properties of these basis functions are employed to achieve a nonlinear algebraic equation, replacing the performance index and a nonlinear system of algebraic equations, replacing the dynamical system in terms of the unknown coefficients. Finally, the method of constrained extremum is applied, which consists of adjoining the constraint equations derived from the given dynamical system to the performance index by a set of undetermined Lagrange multipliers. As a result, the necessary conditions of optimality are derived as a system of algebraic equations in the unknown coefficients of the state variable, control variable and Lagrange multipliers. Furthermore, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient.

Keywords: Fractional optimal control problems; Computational method; Hat functions (HFs); Operational matrix; Lagrange multiplier method

References

  • [1] N. H. Sweilam and T. M. Al-Ajami, Legendre spectral-collocation method for solving some types of fractional optimal control problems, Journal of Advanced Research, vol. 6 (2015), pp. 393-403. Google Scholar

  • [2] A. Lotfi, M. Dehghan and S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Computer and mathematics with applications, vol. 62 (2011), pp. 1055-1067. Google Scholar

  • [3] T. L. Guo, The necessary conditions of fractional optimal control in the sense of caputo, J. Optim Theory Appl, vol. 156 (2013), pp. 115-126. Google Scholar

  • [4] O. P. Agrawal, A formulation and numerical schem for fractional optimal control problems, J. Vib. control, vol. 13 (2007), pp. 1291-1299. Web of ScienceGoogle Scholar

  • [5] A. Lotfi and S. Yousefi, A numerical technique for solving a class of fractional variational problems, J. Comput. Appl. Math., vol. 237 (2013), pp. 633-643. Google Scholar

  • [6] A. Lotfi, S. Yousefi and M. Dehghan, Numerical solution of a class of fractional optimal control problems via the legendre orthonormal basis combined with the operational matrix and the gauss quadrature rule, Journal of Computational and Applied Mathematics, vol. 250 (2013), pp. 143- 160. Web of ScienceGoogle Scholar

  • [7] O. M. P. Agrawal, M. M. Hasan and X. W. Tangpong, A numerical scheme for a class of parametric problem of fractional variational calculus, J. Comput. Nonlinear Dyn., vol. 7 (2012), pp. 021005-021011. Web of ScienceGoogle Scholar

  • [8] R. Almedia and D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with caputo derivatives, Commun. Nonlinear Sci. Numer. Simul, vol. 16 (2011), pp. 1490-1500. Web of ScienceCrossrefGoogle Scholar

  • [9] R. Almedia and D. F. M. Torres, Calculus of variations with fractional derivatives and frac- tional integrals, Appl. Math. Lett, vol. 22 (2009), pp. 1816-1820. Web of ScienceGoogle Scholar

  • [10] O. M. P. Agrawal, A general finite element formulation for fractional variational problems, J. Math. Anal. Appl., vol. 337 (2008), pp. 1-12. Google Scholar

  • [11] S. Djennounea and M. Bettaye, Optimal synergetic control for fractional-order systems, Auto- matica, vol. 49 (2013), p. 2243. Google Scholar

  • [12] R. Toledo-Hernandez, V. Rico-Ramirez, R. Rico-Martinez, S. Hernandez-Castro and U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive sys- tems. part ii: Numerical solution of fractional optimal control problems, Chemical Engineering Science, vol. 117 (2014), pp. 239-247. Web of ScienceGoogle Scholar

  • [13] R. Kamocki, On the existence of optimal solutions to fractional optimal control problems, Applied Mathematics and Computation, vol. 235 (2014), pp. 94-104. Google Scholar

  • [14] G. M. Mophoua and G. M. Niguerekata, Optimal control of a fractional diffusion equation with state constraints, Computers and Mathematics with Applications, vol. 62 (2011), pp. 1413- 1426. Google Scholar

  • [15] M. Abedini, M. A. Nojoumian, H. Salarieh and A. Meghdari, Model reference adaptive control in fractional order systems using discrete-time approximation methods, Commun Nonlinear Sci Numer Simulat, vol. 25 (2015), pp. 27-40. Web of ScienceCrossrefGoogle Scholar

  • [16] Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems, Struct Multidisc Optim, vol. 38 (2009), pp. 571-581. Google Scholar

  • [17] A. Lotfi and S. A. Yousefi, Epsilon-ritz method for solving a class of fractional constrained optimization problems, J. Optim Theory Appl, vol. 163 (2014), pp. 884-899. Google Scholar

  • [18] F. Jarad, T. Abdeljawad and D. Baleanu, Fractional variational optimal control problems with delayed arguments, m Nonlinear Dyn, vol. 62 (2010), pp. 609-614. Google Scholar

  • [19] A. H. Bhrawy, E. H. Doha, J. A. T. Machado and S. Ezz-Eldien, An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index, Asian Journal of Control, DOI: 10.1002/asjc.1109, 2015. CrossrefWeb of ScienceGoogle Scholar

  • [20] A. Bhrawy, T. Taha and J. A. T. Machado, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dynamics, vol. 81 (2015), pp. 1023-1052. Web of ScienceGoogle Scholar

  • [21] S. Ezz-Eldien, E. Doha, D. Baleanu and A. Bhrawy, A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems, Journal of Vibration and Control, DOI: 10.1177/1077546315573916, 2015. Web of ScienceCrossrefGoogle Scholar

  • [22] A. Bhrawy, E. Doha, D. Baleanu, S. Ezz-Eldien and M. Abdelkawy, An accurate numerical technique for solving fractional optimal control problems, Proc. Rom. Acad. A, vol. 16(1) (2015), pp. 47-54. Google Scholar

  • [23] I. Podlubny, Fractional Differential Equations. San Diego: Academic Press, 1999. Google Scholar

  • [24] M. P. Tripathi, V. K. Baranwal, R. K. Pandey and O. P. Singh, A new numerical algorithm to solve fractional differential equations based on operational matrix of generalized hat functions, Commun Nonlinear Sci Numer Simulat, vol. 18 (2013), pp. 1327-1340. Web of ScienceCrossrefGoogle Scholar

  • [25] M. H. Heydari, M. R. Hooshmandasl, F. M. M. Ghaini and C. Cattani, A computational method for solving stochastic it^o-volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., vol. 270 (2014), pp. 402-415. Web of ScienceGoogle Scholar

  • [26] M. H. Heydari, M. R. Hooshmandasl, C. Cattani and F. M. M. Ghaini, An efficient computa- tional method for solving nonlinear stochastic it^o integral equations: Application for stochastic problems in physics, J. Comput. Phys., vol. 283 (2015), pp. 148-168. Web of ScienceGoogle Scholar

  • [27] E. Babolian and M. Mordad, A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis function, Comput. Math. Appl., vol. 62 (2011), pp. 187-198. Google Scholar

  • [28] S. Momani and Z. Odibat, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math, vol. 207 (2007), pp. 96-110. Google Scholar

About the article

Published Online: 2016-02-26


Citation Information: Tbilisi Mathematical Journal, ISSN (Online) 1512-0139, DOI: https://doi.org/10.1515/tmj-2016-0007.

Export Citation

© 2016 . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
H.M. Srivastava, Devendra Kumar, and Jagdev Singh
Applied Mathematical Modelling, 2017, Volume 45, Page 192

Comments (0)

Please log in or register to comment.
Log in