[1] AGARWAL, R. P.-GRACE, S. R.: Oscillation theorems for certain neutral functional differential equations, Comput. Math. Appl. 38 (1999), 1-11.Google Scholar

[2] BACUL´IKOV´A, B.: Oscillation criteria for second order nonlinear differential equations, Arch. Math. (Brno) 42 (2006), 141-149.Google Scholar

[3] BACUL´IKOV´A, B.: Oscillation theorems for third order neutral differential equations, Tatra Mt. Math. Publ., 2011 (to apear).Google Scholar

[4] BACUL´IKOV´A, B.-LACKOV´A, D.: Oscillation criteria for second order retarded dif- ferential equations, Stud. Univ. ˇ Zilina, Math. Ser. 20 (2006), 11-18.Google Scholar

[5] BAINOV, D. D.-MISHEV, D. P.: Oscillation Theory for Nonlinear Differential Equations with Delay. Adam Hilger, Bristol, 1991.Google Scholar

[6] DˇZURINA, J.-STAVROULAKIS, I. P.: Oscillation criteria for second order delay dif- ferential equations, Appl. Math. Comput. 140 (2003), 445-453.Google Scholar

[7] ERBE, L. H.-KONG, Q.-ZHANG, B. G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York, 1994.Google Scholar

[8] GRACE, S. R.-LALLI, B. S.: Oscillation of nonlinear second order neutral delay differ- ential equations, Rad. Math. 3 (1987), 77-84.Google Scholar

[9] GRAMMATIKOPOULOS, M. K.-LADAS, G.-MEIMARIDOU, A.: Oscillation of second order neutral delay differential equation, Rad. Math. 1 (1985), 267-274.Google Scholar

[10] LADDE, G. S.-LAKSHMIKANTHAM, V.-ZHANG, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987.Google Scholar

[11] KIGURADZE, I. T.-CHATURIA, T. A.: Asymptotic Properties of Solutions of Nonau- tonomous Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993.Google Scholar

[12] LI, T.-HAN, Z.-ZHANG, CH.-SUN, S.: Oscillation theorems for second-order neutral functional differential equations, J. Appl. Anal. (to appear).Google Scholar

[13] LIN, X.-TANG, X. H.: Oscillation of solutions of neutral differential equations with superlinear neutral term, Appl. Math. Lett. 20 (2007), 1016-1022.Google Scholar

[14] LIU, L. H.-BAI, Z.: New oscillation criteria for second-order nonlinear neutral delay differential equations, J. Comput. Appl. Math. 231 (2009), 657-663.Google Scholar

[15] HASANBULLI, M.-ROGOVCHENKO, Y.: Oscillation criteria for second order non- linear neutral differential equations, Appl. Math. Comp. 215 (2010), 4392-4399.Google Scholar

[16] ROGOVCHENKO, Y.-TUNCAY, F.: Oscillation criteria for second order nonlinear differential equations with damping, Nonlinear Anal. 69 (2008), 208-221.Google Scholar

[17] XU, R.-XIA, Y.: A note on the oscillation of second-order nonlinear neutral functional differential equations, J. Contemp. Math. Sci. 3 (2008), 1441-1450.Google Scholar

[18] XU, R.-MENG, F.: Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput. 182 (2006), 797-803.Google Scholar

[19] XU, R.-MENG, F.: Oscillation criteria for second order quasi-linear neutral delay dif- ferential equations, Appl. Math. Comput. 192 (2007), 216-222. Web of ScienceGoogle Scholar

## Comments (0)