## Abstract

Some oscillation theorems are established for the second-order linear neutral differential equations of mixed type

Several examples are also provided to illustrate the main results.

Show Summary Details# Tatra Mountains Mathematical Publications

### The Journal of Slovak Academy of Sciences

# Oscillation results for second-order neutral differential equations of mixed type

#### Open Access

## Abstract

## About the article

## Citing Articles

*International Journal of Differential Equations*, 2014, Volume 2014, Page 1

Editor-in-Chief: Riecan, Beloslav / Duchon, Miloslav

3 Issues per year

SCImago Journal Rank (SJR) 2015: 0.212

Source Normalized Impact per Paper (SNIP) 2015: 0.485

Impact per Publication (IPP) 2015: 0.186

Mathematical Citation Quotient (MCQ) 2015: 0.10

Some oscillation theorems are established for the second-order linear neutral differential equations of mixed type

Several examples are also provided to illustrate the main results.

Keywords: oscillation; neutral differential equations of mixed type; second-order.

[1] HALE, J. K.: Theory of Functional Differential Equations (2nd ed.), Springer-Verlag, New York, 1977.

[2] PHILOS, CH. G.: Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel) 53 (1989), 482-492.

[3] AGARWAL, R. P.-SHIEH, S. L.-YEH, C. C.: Oscillation criteria for second order retarded differential equations, Math. Comput. Modelling 26 (1997), 1-11.

[4] DˇZURINA, J.-STAVROULAKIS, I. P.: Oscillation criteria for second-order delay dif- ferential equations, Appl. Math. Comput. 140 (2003), 445-453.

[5] SUN, Y. G.-MENG, F. W.: Note on the paper of Dˇzurina and Stavroulakis, Appl. Math. Comput. 174 (2006), 1634-1641.

[6] BACUL´IKOV´A, B.: Oscillation criteria for second order nonlinear differential equations, Arch. Math. (Brno) 42 (2006), 141-149.

[7] DˇZURINA, J.: Oscillation of second-order differential equations with mixed argument, J. Math. Anal. Appl. 190 (1995), 821-828.

[8] ERBE, L.-KONG, Q.: Oscillation results for second order neutral differential equations, Funkcial. Ekvac. 35 (1992), 545-557.

[9] GRAMMATIKOPOULOS, M. K.-LADAS, G.-MEIMARIDOU, A.: Oscillation of sec- ond order neutral delay differential equations, Rad. Mat. 1 (1985), 267-274.

[10] GRACE, S. R.-LALLI, B. S.: Oscillation of nonlinear second order neutral delay differ- ential equations, Rad. Mat. 3 (1987), 77-84.

[11] ZHANG, Q. X.-YAN, J. R.-GAO, L.: Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients, Comput. Math. Appl. 59 (2010), 426-430. [Web of Science]

[12] WANG, Q. R.: Oscillation theorems for first-order nonlinear neutral functional differen- tial equations, Comput. Math. Appl. 39 (2000), 19-28.

[13] XU, Z. T.: Oscillation theorems related to averaging technique for second order Emden- -Fowler type neutral differential equations, Rocky Mountain J. Math. 38 (2008), 649-667.

[14] HAN, Z.-LI, T.-SUN, S.-CHEN, W.: On the oscillation of second-order neutral delay differential equations, Adv. Differ. Equ. 2010 (2010), 1-8.

[15] HAN, Z.-LI, T.-SUN, S.-SUN, Y.: Remarks on the paper [Appl. Math. Comput. 207 (2009), 388-396], Appl. Math. Comput. 215 (2010), 3998-4007.

[16] LIU, L. H.-BAI, Y. Z.: New oscillation criteria for second-order nonlinear neutral delay differential equations, J. Comput. Math. Appl. 231 (2009), 657-663.

[17] XU, R.-MENG, F. W.: Oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput. 192 (2007), 216-222.

[18] DONG, J. G.: Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments, Comput. Math. Appl. 59 (2010), 3710-3717.

[19] Dˇ ZURINA, J.-HUD´AKOV´A, D.: Oscillation of second order neutral delay differential equations, Math. Bohem. 134 (2009), 31-38.

[20] HASANBULLI, M.-ROGOVCHENKO, YU. V.: Oscillation criteria for second order nonlinear neutral differential equations, Appl. Math. Comput. 215 (2010), 4392-4399.

[21] BACUL´IKOV´A, B.-Dˇ ZURINA, J.: Oscillation of third-order neutral differential equa- tions, Math. Comput. Modelling 52 (2010), 215-226.

[22] SAKER, S. H.: Oscillation of second order neutral delay differential equations of Emden- -Fowler type, Acta Math. Hungar. 100 (2003), 37-62.

[23] Dˇ ZURINA, J.-BUSA, J.-AIRYAN, E. A.: Oscillation criteria for second-order differ- ential equations of neutral type with mixed arguments, Differ. Equ. 38 (2002), 137-140.

[24] YAN, J. R.: Oscillation of higher order neutral differential equations, J. Aust. Math. Soc. (Ser. A) 64 (1998), 73-81.

[25] GRACE, S. R.: On the oscillations of mixed neutral equations, J. Math. Anal. Appl. 194 (1995), 377-388.

[26] GRACE, S. R.: Oscillations of mixed neutral functional differential equations, Appl. Math. Comput. 68 (1995), 1-13.

[27] YAN, J. R.: Oscillations of higher order neutral differential equations of mixed type, Israel J. Math. 115 (2000), 125-136.

[28] BILCHEV, S. J.-GRAMMATIKOPOULOS, M. K.-STAVROULAKIS, I. P.: Oscilla- tion criteria in higher order neutral equations, J. Math. Anal. Appl. 183 (1994), 1-24.

[29] BILCHEV, S. J.-GRAMMATIKOPOULOS, M. K.- STAVROULAKIS, I. P.: Oscilla- tions of higher order neutral differential equations, J. Aust. Math. Soc. (Ser. A) 52 (1992), 261-284.

[30] WANG, Z. C.: A necessary and sufficient condition for the oscillation of higher order neutral equations, Tohoku. Math. J. (2) 41 (1989), 575-588.

**Published Online**: 2012-11-13

**Published in Print**: 2011-12-01

**Citation Information: **Tatra Mountains Mathematical Publications, ISSN (Print) 1210-3195, DOI: https://doi.org/10.2478/v10127-011-0010-8. Export Citation

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Ruba Al-Hamouri and Ali Zein

DOI: 10.1155/2014/437278

## Comments (0)