Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
See all formats and pricing
More options …

Cortical organization

Manuel Casanova
Published Online: 2010-10-12 | DOI: https://doi.org/10.2478/v10134-010-0002-2


The organization of the cortex can be understood as a complex system comprised of interconnected modules called minicolumns. Comparative anatomical studies suggest that evolution has prompted a scale free world network of connectivity within the white matter while simultaneously increasing the complexity of minicolumnar composition. It is this author’s opinion that this complex system is poised to collapse under the weight of environmental exigencies. Some mental disorders may be the manifestations of this collapse.

Keywords: Minicolumn; Neocortex; Isocortex; Encephalization; Corticalization; Systems theory

  • [1] Shepherd G.W., Neurobiology, 3rd ed., Oxford University Press, New York, 1994 Google Scholar

  • [2] Swanson L.W., Brain architecture: understanding the basic plan, Oxford University Press, New York, 2003 Google Scholar

  • [3] Miller J.H., Page S.E., Complex adaptive systems: an introduction to computational models of social life, Princeton University Press, Princeton, 2007 Google Scholar

  • [4] Noble D., The music of life: biology beyond genes, Oxford University Press: New York, 2006 Google Scholar

  • [5] Harris J.C., Developmental neuropsychiatry, vol. I: fundamentals, Oxford University Press, New York, 1998 Google Scholar

  • [6] Casanova M.F., Tillquist C., Encephalization, emergent properties, and psychiatry: a minicolumnar perspective, Neuroscientist, 2008, 14, 101–118 http://dx.doi.org/10.1177/1073858407309091CrossrefGoogle Scholar

  • [7] Graziadei P.P.C., Monti Graziadei G.A., Neurogenesis and neuron regeneration in the olfactory system of mammals, I: morphological aspects of differentiation and structural organization of the olfactory sensory neurons, J. Neurocytol., 1979, 8, 1–18 http://dx.doi.org/10.1007/BF01206454CrossrefGoogle Scholar

  • [8] Mezey É., Key S., Vogelsang G., Szalayova I., Lange G.D., Crain B., Transplanted bone marrow generates new neurons in human brains, Proc. Natl. Acad. Sci. USA, 2003, 100, 1364–1369 http://dx.doi.org/10.1073/pnas.0336479100CrossrefGoogle Scholar

  • [9] Brown A.G., Nerve cells and nervous systems: an introduction to neuroscience, 2nd ed., Springer, London, 2001 Google Scholar

  • [10] Casanova M.F., An apologia for a paradigm shift in the neurosciences, In: Casanova M.F. (Ed.), Neocortical modularity and the cell minicolumn, Nova Science Publishers, New York, 2005, 33–56 Google Scholar

  • [11] Berlucchi G., Some aspects of the history of the law of dynamic polarization of the neuron: from William James to Sherrington, from Cajal and van Gehuchten to Golgi, J Hist Neurosci, 1999, 8, 191–201 http://dx.doi.org/10.1076/jhin. Scholar

  • [12] Diana M.A., Marty A., Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE), Br. J. Pharmacol., 2004, 142, 9–19 http://dx.doi.org/10.1038/sj.bjp.0705726CrossrefGoogle Scholar

  • [13] Shepherd G.M., Koch C., Introduction to synaptic circuits, In: Shepherd G.M. (Ed.), The synaptic organization of the brain, 4th ed., Oxford University Press, New York, 1998, 1–36 Google Scholar

  • [14] Verhage M., Maia A.S., Plomp J.J., Brussaard A.B., Heeroma J.H., Vermeer H., et al., Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science, 2000, 287, 864–869 http://dx.doi.org/10.1126/science.287.5454.864CrossrefGoogle Scholar

  • [15] Serb J.M., Oakley T.H., Hierarchical phylogenetics as a quantitative analytical framework for evolutionary developmental biology, Bioessays, 2005, 27, 1158–1166 http://dx.doi.org/10.1002/bies.20291CrossrefGoogle Scholar

  • [16] Mountcastle V.B., The columnar organization of the neocortex, Brain, 1997, 120, 701–722 http://dx.doi.org/10.1093/brain/120.4.701CrossrefGoogle Scholar

  • [17] Casanova M.F., Buxhoeveden D., Gomez J., Disruption in the inhibitory architecture of the cell minicolumn: implications for autism, Neuroscientist, 2003, 9, 496–507 http://dx.doi.org/10.1177/1073858403253552CrossrefGoogle Scholar

  • [18] Buxhoeveden D., Casanova M.F., The minicolumn hypothesis in neuroscience, Brain, 2002, 125, 935–951 http://dx.doi.org/10.1093/brain/awf110CrossrefGoogle Scholar

  • [19] Buxhoeveden D., Casanova M.F., The minicolumn and evolution of the brain: a review. Brain Behav. Evol., 2002, 60, 125–151 http://dx.doi.org/10.1159/000065935CrossrefGoogle Scholar

  • [20] Rakic P., Kornack D.R., Neocortical expansion and elaboration during primate evolution: a view from neuroembryology, In: Falk D., Gibson K.R. (Eds.), Evolutionary anatomy of the primate cerebral cortex, Cambridge University Press, New York, 2001, 30–56 Google Scholar

  • [21] Casanova M.F., El-Baz A., Vanbogaert E., Narahari P., Trippe J., Minicolumnar width: comparison between supragranular and infragranular layers, J. Neurosci. Methods, 2009, 184, 19–24 http://dx.doi.org/10.1016/j.jneumeth.2009.07.011CrossrefGoogle Scholar

  • [22] Casanova M.F., Trippe J., Regulatory mechanisms of cortical laminar development, Brain Res. Rev., 2006, 51, 72–84 http://dx.doi.org/10.1016/j.brainresrev.2005.10.002CrossrefGoogle Scholar

  • [23] Peters A., Cifuentes J.M., Sethares C., The organization of pyramidal cells in area 18 of the rhesus money, Cereb. Cortex, 1997, 7, 405–421 http://dx.doi.org/10.1093/cercor/7.5.405CrossrefGoogle Scholar

  • [24] Peinado A., Yuste R., Katz L.C., Gap junctional communication and the development of local circuits in neocortex, Cereb. Cortex, 1993, 3, 488–498 http://dx.doi.org/10.1093/cercor/3.5.488CrossrefGoogle Scholar

  • [25] Peinado A., Yuste R., Katz L.C. Extensive dye coupling between rat neocortical neurons during the period of circuit formation, Neuron, 1993, 10, 103–114 http://dx.doi.org/10.1016/0896-6273(93)90246-NCrossrefGoogle Scholar

  • [26] Casanova M.F., Trippe J., Tillquist C., Switala A., Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes, J. Anat., 2009, 214, 226–234 http://dx.doi.org/10.1111/j.1469-7580.2008.01027.xCrossrefGoogle Scholar

  • [27] Raghanti M.A., Spocter M.A., Butti C., Hof P.R., Sherwood C., A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex, Front. Neuroanat., 2010, doi:10.3389/neuro.05/003.2010 CrossrefGoogle Scholar

  • [28] Buxhoeveden D., Casanova M.F., The cell column in comparative anatomy, In: Casanova M.F. (Ed.), Neocortical modularity and the cell minicolumn, Nova Science Publishers, New York, 2005, 93–116 Google Scholar

  • [29] De Carlos J.A., López-Mascaraque L., Valverde F., Dynamics of cell migration from the lateral ganglionic eminence in the rat, J. Neurosci., 1996, 16, 6146–6156 Google Scholar

  • [30] Jones E.G., The origins of cortical interneurons: mouse versus monkey and human, Cereb. Cortex, 2009, 19, 1953–1956 http://dx.doi.org/10.1093/cercor/bhp088CrossrefGoogle Scholar

  • [31] Rakic P., Evolution of the neocortex: a perspective from developmental biology, Nature, 2009, 10, 724–735 Google Scholar

  • [32] Calvin W.H., How brains think, Basic Books, New York, 1996 Google Scholar

  • [33] Luck S.J., An introduction to the event-related potential technique, MIT Press, Cambridge, 2005 Google Scholar

  • [34] Creutzfeldt O.D., Cortex cerebri: performance, structural and functional organization of the cortex, Oxford University Press, New York, 1995 Google Scholar

  • [35] Goodhill G.J., Axonal path finding, In: Arbib M.A. (Ed.), The handbook of brain theory and neural networks, 2nd ed., MIT Press, Cambridge, 2005, 140–143 Google Scholar

  • [36] King-Irani L., Dangerous assumptions: insidious ideologies and necessary questions, Electron. Intifada, 2002, http://electronicintifada.net/v2/article407.shtml Google Scholar

  • [37] Casanova M.F., Trippe J., Switala A., A temporal continuity to the vertical organization of the human neocortex, Cereb. Cortex, 2007, 17, 130–137 http://dx.doi.org/10.1093/cercor/bhj134CrossrefGoogle Scholar

  • [38] DeFelipe J., Reflections on the structure of the cortical minicolumn, In: Casanova M.F. (Ed.), Neocortical modularity and the cell minicolumn, Nova Science Publishers, New York, 2005, 57–92 Google Scholar

  • [39] Von Economo C., Koskinas G.N., Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen, Springer, Wien, 1925 Google Scholar

  • [40] Lorente de Nó R., The cerebral cortex: architecture, intracortical connections, and motor projections, In: Fulton J.F. (Ed.), Physiology of the nervous system, Oxford University Press, London, 1938, 291–330 Google Scholar

  • [41] Mountcastle V.B., Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol., 1957, 20, 408–434 Google Scholar

  • [42] Powell T.P.S., Mountcastle V.B., Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings in a single unit analysis with cytoarchitecture, Bull. Johns Hopkins Hosp., 1959, 105, 133–162 Google Scholar

  • [43] Casanova M.F., Konkachbaev A.I., Switala A.E., Elmaghraby A.D., Recursive trace line method for detecting myelinated bundles: a comparison study with pyramidal cell arrays, J. Neurosci. Methods, 2008, 168, 367–372 http://dx.doi.org/10.1016/j.jneumeth.2007.10.024CrossrefGoogle Scholar

  • [44] Benifla M., Otsubo H., Ochi A., Weiss S.K., Donner E.J., Shroff M., et al., Temporal lobe surgery for intractable epilepsy in children: an analysis of outcomes in 126 children, Neurosurgery, 2006, 59, 1203–1213 http://dx.doi.org/10.1227/01.NEU.0000245615.32226.83CrossrefGoogle Scholar

  • [45] Sadato N., Pascual-Leone A., Grafman J., Ibañez V., Deiber M.P., Dold G., et al., Activation of the primary visual cortex by Braille reading in blind subjects, Nature, 1996, 380, 526–528 http://dx.doi.org/10.1038/380526a0CrossrefGoogle Scholar

  • [46] DeFelipe J., Alonso-Nanclares L., Arellano J., Ballesteros-Yáñez I., Benavides-Piccione R., Muñoz A., Specialization of the cortical microstructure of humans. In: Kaas J.H., Preuss T.M. (Eds.), Evolution of the nervous system, vol. IV: primates, Academic Press, Oxford, 2007, 167–190 Google Scholar

  • [47] Letinic K., Zoncu R., Rakic P., Origin of GABAergic neurons in the human neocortex, Nature, 2002, 417, 645–649 http://dx.doi.org/10.1038/nature00779CrossrefGoogle Scholar

  • [48] DeFelipe J., Cortical interneurons: from Cajal to 2001, Prog. Brain Res., 2002, 136, 215–238 http://dx.doi.org/10.1016/S0079-6123(02)36019-9CrossrefGoogle Scholar

  • [49] Kacian D.L., Mills D.R., Kramer F.R., Spiegelman S., A replicating RNA molecule suitable for a deailed analysis of the extracellular evolution and replication, Proc. Natl. Acad. Sci. USA, 1972, 69, 3038–3042 http://dx.doi.org/10.1073/pnas.69.10.3038CrossrefGoogle Scholar

  • [50] Supèr H., Uylings H.B., The early differentiation of the neocortex: a hypothesis on neocortical evolution, Cereb. Cortex, 2001, 11, 1101–1109 http://dx.doi.org/10.1093/cercor/11.12.1101CrossrefGoogle Scholar

  • [51] Ten Donkelaar H.J., Reptiles, In: Nieuwenhuys R., Ten Donkelaar H.J., Nicholson C. (Eds.), The central nervous system of vertebrates, vol. 2, Springer, Berlin, 1998, 1315–1524 Google Scholar

  • [52] Supèr H., Soriano E., Uylings H.B., The functions of the preplate in development and evolution of the neocortex and hippocampus, Brain Res Brain Res Rev 1998, 27, 40–64 http://dx.doi.org/10.1016/S0165-0173(98)00005-8CrossrefGoogle Scholar

  • [53] Molnár Z., Conserved developmental algorithms during thalamocortical circuit formation in mammals and reptiles, Novartis Found. Symp., 2000, 228, 148–172 http://dx.doi.org/10.1002/0470846631.ch11CrossrefGoogle Scholar

  • [54] Molnár Z., Development of thalamocortical connections, Springer, Berlin, 1998 Google Scholar

  • [55] Ghosh A., Shatz C.J., Involvement of subplate neurons in the formation of ocular dominance columns, Science, 1992, 255, 1441–1443 http://dx.doi.org/10.1126/science.1542795CrossrefGoogle Scholar

  • [56] Agmon A., Yang L.T., Jones E.G., O’Dowd D.K., Topological precision in the thalamic projection to neonatal mouse barrel cortex, J. Neurosci., 1995, 15, 549–561 Google Scholar

  • [57] Stephan H., Andy O.J., Quantiative comparative neuroanatomy of primates: an attempt at a phylogenetic interpretation, Ann. NY Acad. Sci., 1969, 167, 370–387 http://dx.doi.org/10.1111/j.1749-6632.1969.tb20457.xCrossrefGoogle Scholar

  • [58] Broomhead A., The mediodorsal thalamic nucleus of the brush-tailed possum, Trichosurus vulpecula, J. Anat., 1974, 118, 392–401 Google Scholar

  • [59] Joschko M.A., Sanderson K.J., Cortico-cortical connections of the motor cortex in the brushtailed possum (Trichosurus vulpecula), J. Anat., 1987, 150, 31–42 Google Scholar

  • [60] Kielan-Jaworowska Z., Cifelli R.L., Luo Z.X., Mammals from the age of dinosaurs: origins, evolution, and structure, Columbia Univseristy Press, New York, 2004 Google Scholar

  • [61] Kaas J.H., Reconstructing the organization of neocortex of the first mammals and subsequent modifications, In: Kaas J.H., Krubitzer L.A. (Eds.), Evolution of nervous systems, vol. III: mammals. Academic Press, Oxford, 2007, 27–48 http://dx.doi.org/10.1016/B0-12-370878-8/00057-4CrossrefGoogle Scholar

  • [62] Tissir F., Goffinet A.M., Reelin, Cajal-Retzius cells, and cortical evolution, In: Striedter G.F., Rubenstein J.L.R. (Eds.), Evolution of nervous systems, vol. I: theories, development, invertebrates, Academic Press, Oxford, 2007, 89–97 Google Scholar

  • [63] Catania K.S., Organization of a miniature neocortex: what shrew brains suggest about mammalian evolution. In: Kaas J.H., Krubitzer L.A. (Eds.), Evolution of nervous systems, vol. III: mammals, Academic Press, Oxford, 2007, 137–141 http://dx.doi.org/10.1016/B0-12-370878-8/00063-XCrossrefGoogle Scholar

  • [64] Lambert de Rouvroit C., Goffinet A.M., Neuronal migration, Mech. Dev., 2001, 105, 47–56 http://dx.doi.org/10.1016/S0925-4773(01)00396-3CrossrefGoogle Scholar

  • [65] Grove E.A., Fukuchi-Shimogori T., Generating the cerebral cortical area map, Annu. Rev. Neurosci., 2003, 26, 355–380 http://dx.doi.org/10.1146/annurev.neuro.26.041002.131137CrossrefGoogle Scholar

  • [66] Bar I., Lambert de Rouvroit C., Goffinet A.M., The evolution of cortical development: an hypothesis based on the role of the Reelin signaling pathway, Trends Neurosci. 2000, 23, 633–638 http://dx.doi.org/10.1016/S0166-2236(00)01675-1CrossrefGoogle Scholar

  • [67] Jerison H.J., What fossils tell us about the evolution of the neocortex, In: Kaas J.H., Krubitzer L.A. (Eds.), Evolution of nervous systems, vol. III: mammals. Academic Press, Oxford, 2007, 1–12 http://dx.doi.org/10.1016/B0-12-370878-8/00065-3CrossrefGoogle Scholar

  • [68] Casanova M.F., Switala A., Trippe J., A comparison study on the vertical bias in neocortex and hippocampus, Dev. Neurosci., 2007, 29, 193–200 http://dx.doi.org/10.1159/000096223CrossrefGoogle Scholar

  • [69] Reiner A., A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: implications for the evolution of isocortex, Brain Behav. Evol., 1991, 38, 53–91 http://dx.doi.org/10.1159/000114379CrossrefGoogle Scholar

  • [70] Bayer S.A., Altman J., Development of the endopiriform nucleus and the claustrum in the rat brain, Neuroscience, 1991, 45, 391–412 http://dx.doi.org/10.1016/0306-4522(91)90236-HCrossrefGoogle Scholar

  • [71] McConnell S.K., Constructing the cerebral cortex: neurogenesis and fate determination, Neuron, 1995, 15, 761–768 http://dx.doi.org/10.1016/0896-6273(95)90168-XCrossrefGoogle Scholar

  • [72] Goffinet A.M. The embryonic development of the cortical plate in reptiles: a comparative study in Emys orbiculares and Lacerta agilis, J. Comp. Neurol., 1983, 215, 437–452 http://dx.doi.org/10.1002/cne.902150408CrossrefGoogle Scholar

  • [73] Northcutt R.G., Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci., 1981, 4, 301–350 http://dx.doi.org/10.1146/annurev.ne.04.030181.001505CrossrefGoogle Scholar

  • [74] Martínez-Cerdeño V., Noctor S.C., Kriegstein A.R., The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex, Cereb. Cortex, 2006, 16(Suppl. 1), i152–i161 http://dx.doi.org/10.1093/cercor/bhk017CrossrefGoogle Scholar

  • [75] Molnár Z., Tavare A., Cheung A.F.P., The origin of neocortex: lessons from comparative embryology. In: Kaas J.H., Krubitzer L.A. (Eds.), Evolution of nervous systems, vol. III: mammals. Academic Press, Oxford, 2007, 13–26 http://dx.doi.org/10.1016/B0-12-370878-8/00050-1CrossrefGoogle Scholar

  • [76] Rakic P., One small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, 18, 383–388 http://dx.doi.org/10.1016/0166-2236(95)93934-PCrossrefGoogle Scholar

  • [77] Rakic P., Specification of cerebral cortical areas, Science, 1988, 241, 170–176 http://dx.doi.org/10.1126/science.3291116CrossrefGoogle Scholar

  • [78] Sur M., Leamey C.A., Development and plasticity of cortical areas and networks, Nat. Rev. Neurosci., 2001, 2, 251–262 http://dx.doi.org/10.1038/35067562CrossrefGoogle Scholar

  • [79] Vaccarino F.M., Schwartz M.L., Raballo R., Nilsen J., Rhee J., Shou M., et al., Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis, Nat. Neurosci., 1999, 2, 848 http://dx.doi.org/10.1038/12226CrossrefGoogle Scholar

  • [80] Raballo R., Rhee J., Lyn-Cook R., Leckman J.F., Schwartz M.L., Vaccarino F.M., Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex, J. Neurosci., 2000, 20, 5012–5023 Google Scholar

  • [81] Korada S., Zheng W., Basillico C., Schwartz M.L., Vaccarino F.M., Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex, J. Neurosci., 2002, 22, 863–875 Google Scholar

  • [82] Vaccarino FM, Grigorenko EL, Smith KM, Stevens H. Regulation of cerebral cortical size and neuron number by fibroblast growth factors: implications for autism, J. Autism Dev. Disord., 2009, 39, 511–520 http://dx.doi.org/10.1007/s10803-008-0653-8CrossrefGoogle Scholar

  • [83] Tucker E.S., Segall S., Wu Y., Vernon M., Polleux F., LaMantia A.S., Molecular specification and patterning of progenitor cells in the lateral and medial ganglionic eminences, J. Neurosci., 2008, 28, 9504–9518 http://dx.doi.org/10.1523/JNEUROSCI.2341-08.2008CrossrefGoogle Scholar

  • [84] Ringo J.L., Neuronal interconnections as a function of brain size, Brain Behav. Evol., 1991, 38, 1–6 http://dx.doi.org/10.1159/000114375CrossrefGoogle Scholar

  • [85] Casanova M.F., White matter volume increase and minicolumns in autism. Ann. Neurol., 2004, 56, 453 http://dx.doi.org/10.1002/ana.20196CrossrefGoogle Scholar

  • [86] Rilling J.K., Insel T.R., The primate neocortex in comparative perspective using magnetic resonance imaging, J. Hum. Evol., 1999, 37, 191–223 http://dx.doi.org/10.1006/jhev.1999.0313CrossrefGoogle Scholar

  • [87] Olivares R., Michalland S., Aboitiz F., Cross-species and intraspecies morphometric analysis of the corpus callosum, Brain Behav. Evol., 2000, 55, 37–43 http://dx.doi.org/10.1159/000006640CrossrefGoogle Scholar

  • [88] Williams E.L., Casanova M.F., Autism and dyslexia: a spectrum of cognitive styles as defined by minicolumnar morphometry, Med. Hypotheses, 2010, 74, 59–62 http://dx.doi.org/10.1016/j.mehy.2009.08.003CrossrefGoogle Scholar

  • [89] Hart B.L., Hart L.A., Evolution of the elephant brain: a paradox between brain size and cognitive behavior, In: Kaas J.H., Krubitzer L.A. (Eds.), Evolution of nervous systems, vol. III: mammals. Academic Press, Oxford, 2007, 491–497 http://dx.doi.org/10.1016/B0-12-370878-8/00343-8CrossrefGoogle Scholar

  • [90] Casanova M.F., Schizophrenia as a deficit in the modulation of cortical minicolumns by monoaminergic systems, Int. Rev. Psychiatry, 2007, 19, 361–372 http://dx.doi.org/10.1080/09540260701486738CrossrefGoogle Scholar

  • [91] Casanova M.F., The neuropathology of autism, Brain Pathol., 2008, 14, 101–118. Google Scholar

  • [92] Lowe J., Mirra S.S., Hyman T., Dickson D.W., Ageing and dementia, In: Love S., Louis D.N., Ellison D. (Eds.), Greenfield’s neuropathology, 8th ed., Edward Arnold, London, 2008, 1031–1152 Google Scholar

  • [93] Esiri M., Crow T.J., Psychiatric diseases. In: Love S., Louis D.N., Ellison D. (Eds.), Greenfield’s neuropathology, 8th ed., Edward Arnold, London, 2008, 1153–1196 Google Scholar

  • [94] Casanova M.F., Buxhoeveden D., Switala A., Roy E., Minicolumnar pathology in autism. Neurology, 2002, 58, 428–432 CrossrefGoogle Scholar

  • [95] Casanova M.F., Buxhoeveden D., Switala A., Roy E., Neuronal density and architecture (gray level index) in the brains of autistic patients, J. Child Neurol., 2002, 17, 515–521 http://dx.doi.org/10.1177/088307380201700708CrossrefGoogle Scholar

  • [96] Casanova M.F., El-Baz A., Vanbogaert E., Narahari P., Switala A., A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae, Brain Pathol., 2010, 20, 451–458 http://dx.doi.org/10.1111/j.1750-3639.2009.00319.xCrossrefGoogle Scholar

  • [97] Sokhadze E.M., El-Baz A., Baruth J., Mathai G., Sears L., Casanova M.F., Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism, J. Autism Dev. Disord., 2009, 39, 619–634 http://dx.doi.org/10.1007/s10803-008-0662-7CrossrefGoogle Scholar

  • [98] McCormick D.A., Contreras D., On the cellular and network bases of epileptic seizures, Annu. Rev. Physiol., 2001, 63, 815–846 http://dx.doi.org/10.1146/annurev.physiol.63.1.815CrossrefGoogle Scholar

  • [99] Ratey J.J., Johnson C., Shadow syndromes: the mild forms of major mental disorders that sabotage us, Bantam Books, New York, 1997 Google Scholar

  • [100] Casanova M.F., Buxhoeveden D., Cohen M., Switala A., Roy E., Minicolumnar pathology in dyslexia, Ann. Neurol., 2002, 52, 108–110 http://dx.doi.org/10.1002/ana.10226CrossrefGoogle Scholar

  • [101] Casanova M.F., El-Baz A., Giedd J., Rumsey J.M., Switala A., Increased white matter gyral depth in dyslexia: implications for corticortical connectivity, J. Autism Dev. Disord., 2009, 40, 21–29 http://dx.doi.org/10.1007/s10803-009-0817-1CrossrefGoogle Scholar

  • [102] Casanova M.F., Araque J., Giedd J., Rumsey J.M., Reduced brain size and gyrification in the brains of dyslexic patients, J. Child Neurol., 2004, 19, 275–281 http://dx.doi.org/10.1177/088307380401900407CrossrefGoogle Scholar

  • [103] Casanova M.F., Kreczmanski P., Trippe J., Switala A., Heinsen H., Steinbusch H.W.M., et al., Neuronal distribution in the neocortex of schizophrenic patients, Psychiatry Res., 2008, 158, 266–277 http://dx.doi.org/10.1016/j.psychres.2006.12.009CrossrefGoogle Scholar

  • [104] Casanova M.F., de Zeeuw L., Switala A., Kreczmanski P., Korr H., Ulfig N., et al., Lamination abnormalities in the neocortex of patients with schizophrenia, Psychiatry Res., 2005, 133, 1–12 http://dx.doi.org/10.1016/j.psychres.2004.11.004CrossrefGoogle Scholar

  • [105] Limosin F., Rouillon F., Payan C., Cohen J.M., Strub N., Prenatal exposure to influenza as a risk factor for adult schizophrenia, Acta Psychiatr. Scand., 2003, 107, 331–335 http://dx.doi.org/10.1034/j.1600-0447.2003.00052.xCrossrefGoogle Scholar

  • [106] Barta P.E., Pearlson G.D., Brill L.B. 2nd, Royall R., McGilchrist I.K., Pulver A.E., et al., Planum temporale asymmetry reversal in schizophrenia: replication and relationship to gray matter abnormalities, Am. J. Psychiatry, 1997, 154, 661–667 Google Scholar

  • [107] Ishii T., Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia, Acta Neuropathol., 1966, 6, 181–187 http://dx.doi.org/10.1007/BF00686763CrossrefGoogle Scholar

  • [108] German D.C., White C.L. 3rd, Sparkman D.R., Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex, Neuroscience, 1987, 21, 305–312 http://dx.doi.org/10.1016/0306-4522(87)90123-0CrossrefGoogle Scholar

  • [109] Jellinger K., Quantitative changes in some subcortical nuclei in aging, Alzheimer’s disease and Parkinson’s disease, Neurobiol. Aging, 1987, 8, 556–561 http://dx.doi.org/10.1016/0197-4580(87)90134-5CrossrefGoogle Scholar

  • [110] Saper C.B., Wainer B.H., German D.C., Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease, Neuroscience, 1987, 23, 389–398 http://dx.doi.org/10.1016/0306-4522(87)90063-7CrossrefGoogle Scholar

  • [111] Pearson R.C.A., Esiri M.M., Hiorns R.W., Wilcock G.K., Powell T.P.S., Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease, Proc. Natl. Acad. Sci. USA, 1985, 82, 4531–4534 http://dx.doi.org/10.1073/pnas.82.13.4531CrossrefGoogle Scholar

  • [112] Armstrong E., Curtis M., Buxhoeveden D.P., Fregoe C., Zilles K., Casanova M.F., et al., Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis, Cereb. Cortex, 1991, 1, 426–432 http://dx.doi.org/10.1093/cercor/1.5.426CrossrefGoogle Scholar

  • [113] De LaCoste M.C., White, C.L. III, The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system, Neurobiol. Aging, 1993, 14, 1–16 http://dx.doi.org/10.1016/0197-4580(93)90015-4CrossrefGoogle Scholar

  • [114] Ritchie K., Touchon J. Heterogeneity in senile dementia of the Alzheimer type: individual differences, progressive deterioration or clinical sub-types? J. Clin. Epidemiol., 1992, 45, 1391–1398 http://dx.doi.org/10.1016/0895-4356(92)90201-WCrossrefGoogle Scholar

  • [115] Casanova M.F., Modular concepts of brain organization and the neuropathology of psychiatric conditions, Psychiatry Res., 2003, 118, 101–102 http://dx.doi.org/10.1016/S0165-1781(03)00061-1CrossrefGoogle Scholar

  • [116] Esiri M.M., Chance S.A., Vulnerability to Alzheimer’s pathology in neocortex: the roles of plasticity and columnar organization, J. Alzheimers Dis., 2006, 9(3 Suppl.), 79–89 Google Scholar

About the article

Published Online: 2010-10-12

Published in Print: 2010-03-01

Citation Information: Translational Neuroscience, Volume 1, Issue 1, Pages 62–71, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/v10134-010-0002-2.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Geoff Woolcott
High Ability Studies, 2013, Volume 24, Number 2, Page 153
Geoff Woolcott
High Ability Studies, 2012, Volume 23, Number 1, Page 115

Comments (0)

Please log in or register to comment.
Log in