Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Putative CSF protein biomarker candidates for amnestic mild cognitive impairment

Scott Counts
  • Department of Neurological Sciences, Rush University Medical Center, 1735 W. Harrison Street Suite 300, Chicago, IL, 60612, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elliott Mufson
Published Online: 2010-10-12 | DOI: https://doi.org/10.2478/v10134-010-0004-0

Abstract

The identification of individuals at risk for Alzheimer’s disease (AD) is essential for the timely administration of treatment approaches aimed at slowing the onset or progression of the disease. As amnestic forms of mild cognitive impairment (aMCI) may represent preclinical AD, the search for specific diagnostic biomarkers that characterize those with aMCI is a key research objective. Using surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDITOF-MS), we screened the cerebrospinal fluid (CSF) of Religious Orders Study participants with a clinical diagnosis of no cognitive impairment (NCI), aMCI, or mild/moderate AD for potential biomarkers. CSF was fractionated on immobilized metal affinity chromatography (IMAC) protein arrays preloaded with either gallium (IMAC-Ga), which binds phosphoproteins, or copper (IMAC-Cu) to isolate copper-binding proteins. SELDI TOF-MS analysis of the IMAC-Ga arrays revealed a phosphopeptide of 2490 Da that was selectively increased ∼2-fold in aMCI and AD CSF compared to NCI. SELDI TOF-MS analysis of the IMAC-Cu arrays identified 2 proteins of 11.7 and 13.3 kDa that were both selectively increased ∼1.5–1.6-fold in aMCI and AD CSF. Increasing levels of each protein were associated with poorer performance on the Mini Mental State Exam and higher Braak stage. Hence, increased CSF levels of these proteins may be potential biomarkers for preclinical AD and aid in the development of a CSF biomarker panel with high predictive value for identifying people who would most benefit from early therapeutic interventions to modify disease progression.

Keywords: Alzheimer’s disease; mild cognitive impairment; cerebrospinal fluid; biomarker; proteomics

  • [1] Petersen R. C., Roberts R. O., Knopman D. S., Boeve B. F., Geda Y. E., Ivnik R. J., et al., Mild cognitive impairment: ten years later, Arch Neurol, 2009, 66, 1447–1455 http://dx.doi.org/10.1001/archneurol.2009.266CrossrefGoogle Scholar

  • [2] Morris J. C., Storandt M., Miller J. P., McKeel D. W., Price J. L., Rubin E. H., et al., Mild cognitive impairment represents early-stage Alzheimer disease, Arch Neurol, 2001, 58, 397–405 http://dx.doi.org/10.1001/archneur.58.3.397CrossrefGoogle Scholar

  • [3] Mufson E. J., Chen E. Y., Cochran E. J., Beckett L. A., Bennett D. A. and Kordower J. H., Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment, Exp Neurol, 1999, 158, 469–490 http://dx.doi.org/10.1006/exnr.1999.7086CrossrefGoogle Scholar

  • [4] Price J. L. and Morris J. C., Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease, Ann Neurol, 1999, 45, 358–368 http://dx.doi.org/10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-XCrossrefGoogle Scholar

  • [5] Bennett D. A., Schneider J. A., Bienias J. L., Evans D. A. and Wilson R. S., Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions, Neurology, 2005, 64, 834–841 CrossrefGoogle Scholar

  • [6] Markesbery W. R., Schmitt F. A., Kryscio R. J., Davis D. G., Smith C. D. and Wekstein D. R., Neuropathologic substrate of mild cognitive impairment, Arch Neurol, 2006, 63, 38–46 http://dx.doi.org/10.1001/archneur.63.1.38CrossrefGoogle Scholar

  • [7] Mattsson N., Blennow K. and Zetterberg H., CSF biomarkers: pinpointing Alzheimer pathogenesis, Ann N Y Acad Sci, 2009, 1180, 28–35 http://dx.doi.org/10.1111/j.1749-6632.2009.04944.xCrossrefGoogle Scholar

  • [8] Blennow K., Wallin A., Agren H., Spenger C., Siegfried J. and Vanmechelen E., Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol, 1995, 26, 231–245 http://dx.doi.org/10.1007/BF02815140CrossrefGoogle Scholar

  • [9] Motter R., Vigo-Pelfrey C., Kholodenko D., Barbour R., Johnson-Wood K., Galasko D., et al., Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease, Ann Neurol, 1995, 38, 643–648 http://dx.doi.org/10.1002/ana.410380413CrossrefGoogle Scholar

  • [10] Nitsch R. M., Rebeck G. W., Deng M., Richardson U. I., Tennis M., Schenk D. B., et al., Cerebrospinal fluid levels of amyloid beta-protein in Alzheimer’s disease: inverse correlation with severity of dementia and effect of apolipoprotein E genotype, Ann Neurol, 1995, 37, 512–518 http://dx.doi.org/10.1002/ana.410370414CrossrefGoogle Scholar

  • [11] Vandermeeren M., Mercken M., Vanmechelen E., Six J., van de Voorde A., Martin J. J., et al., Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay, J Neurochem, 1993, 61, 1828–1834 http://dx.doi.org/10.1111/j.1471-4159.1993.tb09823.xCrossrefGoogle Scholar

  • [12] Brys M., Pirraglia E., Rich K., Rolstad S., Mosconi L., Switalski R., et al., Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment, Neurobiol Aging, 2009, 30, 682–690 http://dx.doi.org/10.1016/j.neurobiolaging.2007.08.010Web of ScienceCrossrefGoogle Scholar

  • [13] Li G., Sokal I., Quinn J. F., Leverenz J. B., Brodey M., Schellenberg G. D., et al., CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study, Neurology, 2007, 69, 631–639 http://dx.doi.org/10.1212/01.wnl.0000267428.62582.aaCrossrefGoogle Scholar

  • [14] Mattsson N., Zetterberg H., Hansson O., Andreasen N., Parnetti L., Jonsson M., et al., CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment, Jama, 2009, 302, 385–393 http://dx.doi.org/10.1001/jama.2009.1064CrossrefGoogle Scholar

  • [15] Shaw L. M., Vanderstichele H., Knapik-Czajka M., Clark C. M., Aisen P. S., Petersen R. C., et al., Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects, Ann Neurol, 2009, 65, 403–413 http://dx.doi.org/10.1002/ana.21610Web of ScienceCrossrefGoogle Scholar

  • [16] Fagan A. M., Roe C. M., Xiong C., Mintun M. A., Morris J. C. and Holtzman D. M., Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults, Arch Neurol, 2007, 64, 343–349 http://dx.doi.org/10.1001/archneur.64.3.noc60123CrossrefWeb of ScienceGoogle Scholar

  • [17] Bennett D. A., Wilson R. S., Schneider J. A., Evans D. A., Beckett L. A., Aggarwal N. T., et al., Natural history of mild cognitive impairment in older persons, Neurology, 2002, 59, 198–205 CrossrefGoogle Scholar

  • [18] McKhann G., Drachman D., Folstein M., Katzman R., Price D. and Stadlan E. M., Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease, Neurology, 1984, 34, 939–944 CrossrefGoogle Scholar

  • [19] Aggarwal N. T., Wilson R. S., Beck T. L., Bienias J. L. and Bennett D. A., Mild cognitive impairment in different functional domains and incident Alzheimer’s disease, J Neurol Neurosurg Psychiatry, 2005, 76, 1479–1484 http://dx.doi.org/10.1136/jnnp.2004.053561CrossrefGoogle Scholar

  • [20] Counts S. E., Nadeem M., Wuu J., Ginsberg S. D., Saragovi H. U. and Mufson E. J., Reduction of cortical TrkA but not p75(NTR) protein in early-stage Alzheimer’s disease, Ann Neurol, 2004, 56, 520–531 http://dx.doi.org/10.1002/ana.20233CrossrefGoogle Scholar

  • [21] Mirra S. S., Heyman A., McKeel D., Sumi S. M., Crain B. J., Brownlee L. M., et al., The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease, Neurology, 1991, 41, 479–86. CrossrefGoogle Scholar

  • [22] Braak H. and Braak E., Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol, 1991, 82, 239–259 http://dx.doi.org/10.1007/BF00308809CrossrefGoogle Scholar

  • [23] The National Institute on Aging, Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease., Neurobiol Aging, 1997, 18, S1–2 http://dx.doi.org/10.1016/S0197-4580(97)00057-2CrossrefGoogle Scholar

  • [24] Li G., Peskind E. R., Millard S. P., Chi P., Sokal I., Yu C. E., et al., Cerebrospinal fluid concentration of brain-derived neurotrophic factor and cognitive function in non-demented subjects, PLoS One, 2009, 4, e5424, DOI:10.1371/journal.pone.0005424 http://dx.doi.org/10.1371/journal.pone.0005424CrossrefWeb of ScienceGoogle Scholar

  • [25] Zhang J., Sokal I., Peskind E. R., Quinn J. F., Jankovic J., Kenney C., et al., CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases, Am J Clin Pathol, 2008, 129, 526–529 http://dx.doi.org/10.1309/W01Y0B808EMEH12LWeb of ScienceCrossrefGoogle Scholar

  • [26] Puchades M., Hansson S. F., Nilsson C. L., Andreasen N., Blennow K. and Davidsson P., Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease, Brain Res Mol Brain Res, 2003, 118, 140–146 http://dx.doi.org/10.1016/j.molbrainres.2003.08.005CrossrefGoogle Scholar

  • [27] Lovell M. A., Lynn B. C., Xiong S., Quinn J. F., Kaye J. and Markesbery W. R., An aberrant protein complex in CSF as a biomarker of Alzheimer disease, Neurology, 2008, 70,2212–2218 http://dx.doi.org/10.1212/01.wnl.0000312383.39973.88CrossrefGoogle Scholar

  • [28] Mukaetova-Ladinska E. B., Milne J., Andras A., Abdel-All Z., Cerejeira J., Greally E., et al., Alpha- and gamma-synuclein proteins are present in cerebrospinal fluid and are increased in aged subjects with neurodegenerative and vascular changes, Dement Geriatr Cogn Disord, 2008, 26, 32–42 http://dx.doi.org/10.1159/000141039Web of ScienceCrossrefGoogle Scholar

  • [29] Iqbal K., Flory M., Khatoon S., Soininen H., Pirttila T., Lehtovirta M., et al., Subgroups of Alzheimer’s disease based on cerebrospinal fluid molecular markers, Ann Neurol, 2005, 58, 748–757 http://dx.doi.org/10.1002/ana.20639CrossrefGoogle Scholar

  • [30] Iqbal K. and Grundke-Iqbal I., Elevated levels of tau and ubiquitin in brain and cerebrospinal fluid in Alzheimer’s disease, Int Psychogeriatr, 1997, 9Suppl 1, 289–96; discussion 317–321 http://dx.doi.org/10.1017/S1041610297005024CrossrefGoogle Scholar

  • [31] Carrette O., Demalte I., Scherl A., Yalkinoglu O., Corthals G., Burkhard P., et al., A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease, Proteomics, 2003, 3, 1486–1494 http://dx.doi.org/10.1002/pmic.200300470CrossrefGoogle Scholar

  • [32] Simonsen A. H., McGuire J., Podust V. N., Davies H., Minthon L., Skoog I., et al., Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease, Neurobiol Aging, 2008, 29, 961–968 http://dx.doi.org/10.1016/j.neurobiolaging.2007.01.011CrossrefGoogle Scholar

  • [33] Hoekman K., Van Nieuwkoop J. A. and Willemze R., The significance of beta-2 microglobulin in clinical medicine, Neth J Med, 1985, 28, 551–557 Google Scholar

  • [34] Tizon B., Ribe E. M., Mi W., Troy C. M. and Levy E., Cystatin C Protects Neuronal Cells from Amyloid-beta-induced Toxicity, J Alzheimers Dis, 2010, 19, 885–894 Google Scholar

  • [35] Petersen R. C., Aisen P. S., Beckett L. A., Donohue M. C., Gamst A. C., Harvey D. J., et al., Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization, Neurology, 2010, 74, 201–209 http://dx.doi.org/10.1212/WNL.0b013e3181cb3e25CrossrefGoogle Scholar

  • [36] deToledo-Morrell L., Stoub T. R. and Wang C., Hippocampal atrophy and disconnection in incipient and mild Alzheimer’s disease, Prog Brain Res, 2007, 163, 741–753 http://dx.doi.org/10.1016/S0079-6123(07)63040-4Web of ScienceCrossrefGoogle Scholar

  • [37] Ray S., Britschgi M., Herbert C., Takeda-Uchimura Y., Boxer A., Blennow K., et al., Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins, Nat Med, 2007, 13, 1359–1362 http://dx.doi.org/10.1038/nm1653CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2010-10-12

Published in Print: 2010-03-01


Citation Information: Translational Neuroscience, Volume 1, Issue 1, Pages 2–8, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/v10134-010-0004-0.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Scott E. Counts, Milos D. Ikonomovic, Natosha Mercado, Irving E. Vega, and Elliott J. Mufson
Neurotherapeutics, 2017, Volume 14, Number 1, Page 35
[2]
Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles R. Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan de Silva, Giuseppe Di Giovanni, Claude M. Wischik, and Patrick R. Hof
Progress in Neurobiology, 2017, Volume 151, Page 101

Comments (0)

Please log in or register to comment.
Log in