Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Brain tau isoform mRNA and protein correlation in PSP brain

Luk Connie / Vandrovcova Jana / Malzer Elke / Lees Andrew / Silva Rohan
Published Online: 2010-10-12 | DOI: https://doi.org/10.2478/v10134-010-0009-8


Insoluble aggregates of the microtubule associated protein, tau are pathological hallmarks of several neurodegenerative diseases, including Alzheimer’s disease (AD), called tauopathies. The tau gene (MAPT) is alternatively spliced and the composition of resulting protein isoforms in aggregates is disease specific. Progressive supranuclear palsy (PSP) is characterised by tangles predominantly containing isoforms with four microtubule binding repeat domains (4R-tau) suggesting that changes in isoform-specific mRNA expression play a role the pathogenesis of the disease. This is supported by the genetics of MAPT. In this study, we quantified expression of 3R- and 4R-tau isoforms at both the mRNA and protein levels in the caudate nucleus, a region severely affected by tau pathology. Results from real-time qPCR and a recently developed ELISA showed statistically significant increase in 4R-tau isoforms in PSP samples compared to controls. In addition, we measured soluble and insoluble hyperphosphorylated tau protein fractions in each PSP sample and compared to the corresponding mRNA transcript levels. No strong correlations were observed with either 3R- or 4R-tau. These findings confirmed the increased ratio of 4R-tau:3R-tau isoforms in PSP. However, we did not find a direct quantitative relationship between individual mRNA and protein levels suggesting a more complex regulation of isoform expression at the post-transcriptional level.

Keywords: Tau; MAPT; tauopathy; Alzheimer’s disease; progressive supranuclear palsy; parkinsonism; gene expression; mRNA

  • [1] Steele, J.C., Richardson, J.C., Olszewski, J., Progressive Supranuclear Palsy. a Heterogeneous Degeneration Involving the Brain Stem, Basal Ganglia and Cerebellum with Vertical Gaze and Pseudobulbar Palsy, Nuchal Dystonia and Dementia, Arch. Neurol., 1964, 10, 333–359. Google Scholar

  • [2] Daniel, S.E., de Bruin, V.M., Lees, A.J., The clinical and pathological spectrum of Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy): a reappraisal, Brain, 1995, 118(Pt 3), 759–770. http://dx.doi.org/10.1093/brain/118.3.759CrossrefGoogle Scholar

  • [3] Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R.C., et al., Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop, Neurology, 1996, 47, 1–9. CrossrefGoogle Scholar

  • [4] Maher, E.R., Lees, A.J., The clinical features and natural history of the Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy), Neurology, 1986, 36, 1005–1008. CrossrefGoogle Scholar

  • [5] Pollock, N.J., Mirra, S.S., Binder, L.I., Hansen, L.A., Wood, J.G., Filamentous aggregates in Pick’s disease, progressive supranuclear palsy, and Alzheimer’s disease share antigenic determinants with microtubule-associated protein, tau, Lancet, 1986, 2, 1211. http://dx.doi.org/10.1016/S0140-6736(86)92212-9CrossrefGoogle Scholar

  • [6] Hernandez, F., Avila, J., Tauopathies, Cell Mol. Life Sci., 2007, 64, 2219–2233. http://dx.doi.org/10.1007/s00018-007-7220-xCrossrefGoogle Scholar

  • [7] Ludolph, A.C., Kassubek, J., Landwehrmeyer, B.G., Mandelkow, E., Mandelkow, E.M., Burn, D.J., et al., Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options, Eur. J. Neurol., 2009, 16, 297–309. http://dx.doi.org/10.1111/j.1468-1331.2008.02513.xCrossrefWeb of ScienceGoogle Scholar

  • [8] Williams, D.R., Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau, Intern. Med. J., 2006, 36, 652–660. http://dx.doi.org/10.1111/j.1445-5994.2006.01153.xCrossrefGoogle Scholar

  • [9] Goedert, M., Spillantini, M.G., Jakes, R., Rutherford, D., Crowther, R.A., Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease, Neuron, 1989, 3, 519–526. http://dx.doi.org/10.1016/0896-6273(89)90210-9CrossrefGoogle Scholar

  • [10] Buee, L., Delacourte, A., Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease, Brain Pathol., 1999, 9, 681–693. http://dx.doi.org/10.1111/j.1750-3639.1999.tb00550.xCrossrefGoogle Scholar

  • [11] de Silva, R., Lashley, T., Gibb, G., Hanger, D., Hope, A., Reid, A., et al., Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies, Neuropathol. Appl. Neurobiol., 2003, 29, 288–302. http://dx.doi.org/10.1046/j.1365-2990.2003.00463.xCrossrefGoogle Scholar

  • [12] Togo, T., Sahara, N., Yen, S.H., Cookson, N., Ishizawa, T., Hutton, M., et al., Argyrophilic grain disease is a sporadic 4-repeat tauopathy, J. Neuropathol. Exp. Neurol., 2002, 61, 547–556. Google Scholar

  • [13] Delacourte, A., Sergeant, N., Wattez, A., Gauvreau, D., Robitaille, Y., Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their tau isoform distribution and phosphorylation, Ann. Neurol., 1998, 43, 193–204. http://dx.doi.org/10.1002/ana.410430209CrossrefGoogle Scholar

  • [14] Sergeant, N., David, J.P., Lefranc, D., Vermersch, P., Wattez, A., Delacourte, A., Different distribution of phosphorylated tau protein isoforms in Alzheimer’s and Pick’s diseases, FEBS Lett., 1997, 412, 578–582. http://dx.doi.org/10.1016/S0014-5793(97)00859-4CrossrefGoogle Scholar

  • [15] Hutton, M., Lendon, C.L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., et al., Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17, Nature, 1998, 393, 702–705. http://dx.doi.org/10.1038/31508CrossrefGoogle Scholar

  • [16] Spillantini, M.G., Murrell, J.R., Goedert, M., Farlow, M.R., Klug, A., Ghetti, B., Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc. Natl. Acad. Sci. U S A, 1998, 95, 7737–7741. http://dx.doi.org/10.1073/pnas.95.13.7737CrossrefGoogle Scholar

  • [17] Baker, M., Litvan, I., Houlden, H., Adamson, J., Dickson, D., Perez-Tur, J., et al., Association of an extended haplotype in the tau gene with progressive supranuclear palsy, Hum. Mol. Genet., 1999, 8, 711–715. http://dx.doi.org/10.1093/hmg/8.4.711CrossrefGoogle Scholar

  • [18] Houlden, H., Baker, M., Morris, H.R., MacDonald, N., Pickering-Brown, S., Adamson, J., et al., Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype, Neurology, 2001, 56, 1702–1706. CrossrefGoogle Scholar

  • [19] Pittman, A.M., Myers, A.J., Abou-Sleiman, P., Fung, H.C., Kaleem, M., Marlowe, L., et al., Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration, J. Med. Genet., 2005, 42, 837–846. http://dx.doi.org/10.1136/jmg.2005.031377CrossrefGoogle Scholar

  • [20] Myers, A.J., Kaleem, M., Marlowe, L., Pittman, A.M., Lees, A.J., Fung, H.C., et al., The H1c haplotype at the MAPT locus is associated with Alzheimer’s disease, Hum. Mol. Genet., 2005, 14, 2399–2404. http://dx.doi.org/10.1093/hmg/ddi241CrossrefGoogle Scholar

  • [21] Chambers, C.B., Lee, J.M., Troncoso, J.C., Reich, S., Muma, N.A., Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer’s disease, Ann. Neurol., 1999, 46, 325–332. http://dx.doi.org/10.1002/1531-8249(199909)46:3<325::AID-ANA8>3.0.CO;2-VCrossrefGoogle Scholar

  • [22] Takanashi, M., Mori, H., Arima, K., Mizuno, Y., Hattori, N., Expression patterns of tau mRNA isoforms correlate with susceptible lesions in progressive supranuclear palsy and corticobasal degeneration, Brain Res. Mol. Brain Res., 2002, 104, 210–219. http://dx.doi.org/10.1016/S0169-328X(02)00382-0CrossrefGoogle Scholar

  • [23] Spillantini, M.G., Bird, T.D., Ghetti, B., Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies, Brain Pathol., 1998, 8, 387–402. http://dx.doi.org/10.1111/j.1750-3639.1998.tb00162.xCrossrefGoogle Scholar

  • [24] Luk, C., Giovannoni, G., Williams, D.R., Lees, A.J., de Silva, R., Development of a sensitive ELISA for quantification of three- and four-repeat tau isoforms in tauopathies, J. Neurosci. Meth., 2009, 180, 34–42. http://dx.doi.org/10.1016/j.jneumeth.2009.02.015CrossrefWeb of ScienceGoogle Scholar

  • [25] Hanger, D.P., Betts, J.C., Loviny, T.L., Blackstock, W.P., Anderton, B.H., New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry, J. Neurochem., 1998, 71, 2465–2476. http://dx.doi.org/10.1046/j.1471-4159.1998.71062465.xCrossrefGoogle Scholar

  • [26] Tobin, J.E., Latourelle, J.C., Lew, M.F., Klein, C., Suchowersky, O., Shill, H.A., et al., Haplotypes and gene expression implicate the MAPT region for Parkinson disease: the GenePD Study, Neurology, 2008, 71, 28–34. http://dx.doi.org/10.1212/01.wnl.0000304051.01650.23CrossrefWeb of ScienceGoogle Scholar

  • [27] Williams, D.R., Holton, J.L., Strand, C., Pittman, A., de Silva, R., Lees, A.J., et al., Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome, Brain, 2007, 130, 1566–1576. http://dx.doi.org/10.1093/brain/awm104CrossrefWeb of ScienceGoogle Scholar

  • [28] Dickson, D.W., Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration, J. Neurol., 1999, 246Suppl 2, II6–15. http://dx.doi.org/10.1007/BF03161076CrossrefGoogle Scholar

  • [29] Wakabayashi, K., Takahashi, H., Pathological heterogeneity in progressive supranuclear palsy and corticobasal degeneration, Neuropathology, 2004, 24, 79–86. http://dx.doi.org/10.1111/j.1440-1789.2003.00543.xWeb of ScienceCrossrefGoogle Scholar

  • [30] Ezquerra, M., Gaig, C., Ascaso, C., Munoz, E., Tolosa, E., Tau and saitohin gene expression pattern in progressive supranuclear palsy, Brain Res., 2007, 1145, 168–176.a http://dx.doi.org/10.1016/j.brainres.2007.01.098CrossrefWeb of ScienceGoogle Scholar

  • [31] Motoi, Y., Takanashi, M., Itaya, M., Ikeda, K., Mizuno, Y., Mori, H., Glial localization of four-repeat tau in atypical progressive supranuclear palsy, Neuropathology, 2004, 24, 60–65. http://dx.doi.org/10.1111/j.1440-1789.2003.00529.xCrossrefGoogle Scholar

  • [32] Mott, R.T., Dickson, D.W., Trojanowski, J.Q., Zhukareva, V., Lee, V.M., Forman, M., et al., Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias, J. Neuropathol. Exp. Neurol., 2005, 64, 420–428. Google Scholar

  • [33] Lichtinghagen, R., Musholt, P.B., Lein, M., Romer, A., Rudolph, B., Kristiansen, G., et al., Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue, Eur. Urol., 2002, 42, 398–406. http://dx.doi.org/10.1016/S0302-2838(02)00324-XCrossrefGoogle Scholar

  • [34] Gygi, S.P., Rochon, Y., Franza, B.R., Aebersold, R., Correlation between protein and mRNA abundance in yeast, Mol. Cell. Biol., 1999, 19, 1720–1730. Google Scholar

  • [35] Chen-Plotkin, A.S., Xiao, G., Geser, F., Martinez-Lage, M., Grossman, M., Unger, T., Wood, E.M., Van Deerlin, V.M., Trojanowski, J.Q., Lee, V.M-Y., Brain progranulin expression in GRN-associated frontotemporal lobar degeneration, Acta Neuropathol., 2010, 119, 111–122. http://dx.doi.org/10.1007/s00401-009-0576-2CrossrefGoogle Scholar

  • [36] Nelson, P.T., Keller, J.N., RNA in brain disease: no longer just “the messenger in the middle”, J. Neuropathol. Exp. Neurol., 2007, 66, 461–468. http://dx.doi.org/10.1097/01.jnen.0000240474.27791.f3Web of ScienceCrossrefGoogle Scholar

  • [37] Kingsbury, A.E., Foster, O.J., Nisbet, A.P., Cairns, N., Bray, L., Eve, D.J., et al., Tissue pH as an indicator of mRNA preservation in human postmortem brain, Brain Res. Mol. Brain Res., 1995, 28, 311–318. http://dx.doi.org/10.1016/0169-328X(94)00219-5CrossrefGoogle Scholar

About the article

Published Online: 2010-10-12

Published in Print: 2010-03-01

Citation Information: Translational Neuroscience, Volume 1, Issue 1, Pages 30–36, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/v10134-010-0009-8.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Connie Luk, Yaroslau Compta, Nadia Magdalinou, Maria José Martí, Geshanthi Hondhamuni, Henrik Zetterberg, Kaj Blennow, Radu Constantinescu, Yolande Pijnenburg, Brit Mollenhauer, Claudia Trenkwalder, John Van Swieten, Wan Zheng Chiu, Barbara Borroni, Ana Cámara, Perdita Cheshire, David R. Williams, Andrew J. Lees, and Rohan de Silva
Journal of Neurochemistry, 2012, Volume 123, Number 3, Page 396
Fidel Anaya, Andrew Lees, and Rohan Silva
Translational Neuroscience, 2011, Volume 2, Number 2

Comments (0)

Please log in or register to comment.
Log in