Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Radial structure of dolphin insula

Manuel Casanova / Juan Trippe / Christopher Tillquist / Andrew Switala
Published Online: 2010-10-12 | DOI: https://doi.org/10.2478/v10134-010-0010-2


The brain of the bottlenose dolphin exhibits patterns of isocortical parcellation and cytoarchitecture distinct from those seen in primates, yet cell clusters in anterior insula are comparable in scale to module-like cell arrangements found throughout isocortex in other placental mammalian species with long divergent evolutionary histories. This similarity may be due to common ancestry, or to convergence as a result of selective constraints on organization of connections within such modules. Differences reflect alternate arrangements of minicolumns, an elemental cytoarchitectonic motif of isocortex defined by radially oriented pyramidal cell arrays. In contrast with larger modular structures incorporating them, minicolumns have been highly conserved in mammalian evolution. In this study a previously validated imaging method was employed to assess verticality, D, a parameter indicating radial bias of isocortex. Photomicrographs of coronal Nissl-stained sections of dolphin anterior insular cortex were compared with sections from human brains of putatively homologous areas as well as other isocortical areas differing in modular organization. Dolphin insula exhibited a high degree of verticality consistent with conserved minicolumnar organization. Our findings indicate that a basic structural motif of isocortex is synapomorphic in a species of marine mammal exhibiting unique phylogenetically derived isocortical characteristics.

Keywords: Cetaceans; Neocortex; Minicolumns; Pyramidal cells; Tursiops truncatus

  • [1] Kaas J.H., From mice to men: the evolution of the large, complex human brain, J. Biosci., 2005, 30, 155–165 http://dx.doi.org/10.1007/BF02703695CrossrefGoogle Scholar

  • [2] Marino L., Convergence in complex cognitive abilities in cetaceans and primates, Brain Behav. Evol., 2002, 59, 21–32 http://dx.doi.org/10.1159/000063731CrossrefGoogle Scholar

  • [3] Jerison H.J., Evolution of the brain and intelligence, Academic Press, New York, 1973 Google Scholar

  • [4] Northcutt R.G., Kaas J.H., The emergence and evolution of mammalian neocortex, Trends Neurosci., 1995, 18, 373–379 http://dx.doi.org/10.1016/0166-2236(95)93932-NCrossrefGoogle Scholar

  • [5] Kesarev V.S., Malofeeva L.I., Trykova O.V., Structural organization of the cerebral neocortex in cetaceans in cetaceans, Arh. Anat. Gistol. Embriol., 1977, 73, 23–30 Google Scholar

  • [6] Morgane P.J., Jacobs M.S., McFarland W.L., The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus): surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species, Brain Res. Bull., 1980, 5(3 suppl. 1), 1–107 http://dx.doi.org/10.1016/0361-9230(80)90272-5CrossrefGoogle Scholar

  • [7] Manger P., Sum M., Szymanski M., Ridgeway S., Krubitzer L., Modular subdivisions of dolphin insular cortex: does evolutionary history repeat itself? J. Cogn. Neurosci., 1998, 10, 153–166 http://dx.doi.org/10.1162/089892998562627CrossrefGoogle Scholar

  • [8] Hof P.R., Chanis R., Marino L., Cortical complexity in cetacean brains, Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2005, 287, 1142–1152 Google Scholar

  • [9] Hof P.R., Van der Gucht E., Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae), Anat. Rec., 2007, 290, 1–31 http://dx.doi.org/10.1002/ar.20407CrossrefGoogle Scholar

  • [10] Gressens P., Evrard P., The glial fascicle: an ontogenic and phylogenic unit guiding, supplying and distributing mammalian cortical neurons, Brain Res. Dev. Brain Res., 1993, 76, 272–277 http://dx.doi.org/10.1016/0165-3806(93)90218-YCrossrefGoogle Scholar

  • [11] Buxhoeveden D.P., Casanova M.F., The minicolumn and evolution of the brain: a review, Brain Behav. Evol., 2002, 60, 125–151 http://dx.doi.org/10.1159/000065935CrossrefGoogle Scholar

  • [12] Mountcastle V.B., Introduction, Cereb. Cortex, 2003, 13, 2–4 http://dx.doi.org/10.1093/cercor/13.1.2CrossrefGoogle Scholar

  • [13] Mountcastle V.B., An organizing principle for cerebral function: the unit module and the distributed system, In: Edelman G.M., Mountcastle V.B., The mindful brain: cortical organization and the group-selective theory of higher brain function, MIT Press, Cambridge, 1978, 7–51 Google Scholar

  • [14] Casanova M.F., Trippe J., Switala A., A temporal continuity to the vertical organization of the human neocortex, Cereb. Cortex, 2007, 17, 130–137 http://dx.doi.org/10.1093/cercor/bhj134CrossrefWeb of ScienceGoogle Scholar

  • [15] Rakic P., A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, 18, 383–388 http://dx.doi.org/10.1016/0166-2236(95)93934-PCrossrefGoogle Scholar

  • [16] Casanova M.F., Switala A.E., Minicolumnar morphometry: Computerized image analysis. In: Casanova M.F. (Ed.), Neocortical modularity and the cell minicolumn, Nova Science Publishers, New York, 2005, 165–184 Google Scholar

  • [17] Casanova M.F., Switala A.E., Trippe J., A comparison study of the vertical bias of pyramidal cells in the hippocampus and neocortex, Dev. Neurosci., 2007, 29, 193–200 http://dx.doi.org/10.1159/000096223CrossrefWeb of ScienceGoogle Scholar

  • [18] Pourdeyhimi B., Xu B., Nayernouri A., Evaluating carpet appearance loss: pile lay orientation, Text. Res. J., 1994, 64, 130–135 http://dx.doi.org/10.1177/004051759406400302CrossrefGoogle Scholar

  • [19] Buxhoveden D.P., Casanova M.F., Encephalization, minicolumns, and hominid evolution. In: Casanova M.F. (Ed.), Neocortical modularity and the cell minicolumn, Nova Science Publishers, New York, 2005, 119–138 Google Scholar

  • [20] Krmpotić-Nemanić J., Kostović I., Nemanić Đ., Prenatal and perinatal development of radial cell columns in the human auditory cortex, Acta Oto-Laryngol., 1984, 97, 489–495 http://dx.doi.org/10.3109/00016488409132926CrossrefGoogle Scholar

  • [21] Cherniak C., Component placement optimization in the brain, J. Neurosci., 1994, 14, 2418–2427 Google Scholar

  • [22] Kaas J.H., The evolution of isocortex, Brain Behav. Evol., 1995, 46, 187–196 http://dx.doi.org/10.1159/000113273CrossrefGoogle Scholar

About the article

Published Online: 2010-10-12

Published in Print: 2010-03-01

Citation Information: Translational Neuroscience, Volume 1, Issue 1, Pages 37–42, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/v10134-010-0010-2.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in