Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Corpus callosum shape analysis with application to dyslexia

Manuel Casanova / Ayman El-Baz / Ahmed Elnakib / Jay Giedd / Judith Rumsey / Emily Williams / Andrew Switala
Published Online: 2010-10-22 | DOI: https://doi.org/10.2478/v10134-010-0017-8

Abstract

Morphometric studies of the corpus callosum suggest its involvement in a number of psychiatric conditions. In the present study we introduce a novel pattern recognition technique that offers a point-bypoint shape descriptor of the corpus callosum. The method uses arc lengths of electric field lines in order to avoid discontinuities caused by folding anatomical contours. We tested this technique by comparing the shape of the corpus callosum in a series of dyslexic men (n = 16) and age-matched controls (n = 14). The results indicate a generalized increase in size of the corpus callosum in dyslexia with a concomitant diminution at its rostral and caudal poles. The reported shape analysis and 2D-reconstruction provide information of anatomical importance that would otherwise passed unnoticed when analyzing size information alone.

Keywords: Brain mapping; Corpus callosum; Dyslexia; Magnetic resonance imaging

  • [1] Rilling J.K., Insel T.R., The primate neocortex in comparative perspective using magnetic resonance imaging, J. Hum. Evol., 1999, 37, 191–223 http://dx.doi.org/10.1006/jhev.1999.0313CrossrefGoogle Scholar

  • [2] Olivares R., Michalland S., Aboitiz F., Cross-species and intraspecies morphometric analysis of the corpus callosum, Brain. Behav. Evol., 2000, 55, 37–43 http://dx.doi.org/10.1159/000006640CrossrefGoogle Scholar

  • [3] Striedter G.F., Principles of brain evolution, Sinauer Associates, Sunderland, 2005 Google Scholar

  • [4] Johnson S.B., Casanova M.F., Interhemispheric connectivity: the evolution and nature of the corpus callosum, In: T.B. Westland and R.N. Calton, (Eds.), Handbook on white matter: Structure, function, and changes, Nova Science, Hauppauge, 2009, 3–15 Google Scholar

  • [5] Williams E.L., Casanova M.F., Autism and dyslexia: a spectrum of cognitive styles as defined by minicolumnar morphometry, Med. Hypotheses, 2009, in press Web of ScienceGoogle Scholar

  • [6] Wolf M., Proust and the squid: The story and science of the reading brain, HarperCollins, New York, 2007 Google Scholar

  • [7] Vellutino F.R., Scanlon D.M., Phonological coding, phonological awareness and reading ability: evidence from a longitudinal and experimental study, Merrill-Palmer Q., 1987, 33, 321–363 Google Scholar

  • [8] Casanova M.F., Araque J., Giedd J., Rumsey J.M., Reduced brain size and gyrification in the brains of dyslexic patients, J. Child Neurol., 2004, 19, 275–281 http://dx.doi.org/10.1177/088307380401900407CrossrefGoogle Scholar

  • [9] Casanova M.F., Christensen J.D., Giedd J., Rumsey J.M., Garver D.L., Postel G.C., Magnetic resonance imaging study of brain asymmetries in dyslexic patients, J. Child Neurol., 2005, 20, 842–847 http://dx.doi.org/10.1177/08830738050200101401CrossrefGoogle Scholar

  • [10] Casanova M.F., El-Baz A.S., Giedd J., Rumsey J.M., Switala A.E., Increased white matter gyral depth in dyslexia: implications for corticocortical connectivity, J. Autism Dev. Disord., 2009, in press Web of ScienceGoogle Scholar

  • [11] Casanova M.F., Sanders R.D., Goldberg T.E., Bigelow L.B., Christison G., Torrey E.F., et al., Morphometry of the corpus callosum in monozygotic twins discordant for schizophrenia: a magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatry, 1990, 53, 416–421 http://dx.doi.org/10.1136/jnnp.53.5.416CrossrefGoogle Scholar

  • [12] Di Donato M., Dabic P., Castelvecchio S., Santambrogio C., Brankovic J., Collarini L., et al., Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and ‘new’ conicity index comparisons, Eur. J. Cardiothorac. Surg., 2006, 29, S225–S230 http://dx.doi.org/10.1016/j.ejcts.2006.03.002CrossrefGoogle Scholar

  • [13] Sabo E., Beck A.H., Montgomery E.A., Bhattacharya B., Meitner P., Wang J.Y., et al., Computerized morphometry as an aid in determining the grade of dysplasia and progression to adenocarcinoma in Barrett’s esophagus, Lab. Invest., 2006, 86, 1261–1271 http://dx.doi.org/10.1038/labinvest.3700481CrossrefGoogle Scholar

  • [14] Casanova M.F., Zito M., Goldberg T.E., Torrey E.F., Bigelow L.B., Sanders R.D., et al., Corpus callosum curvature in schizophrenic twins, Biol. Psychiatry, 1990, 28, 83–84 http://dx.doi.org/10.1016/0006-3223(90)90436-6CrossrefGoogle Scholar

  • [15] Armstrong E., Curtis M., Buxhoeveden D.P., Fregoe C., Zilles K., Casanova M.F., et al., Cortical gyrification in the rhesus monkey: a test of the mechanical folding hypothesis, Cereb. Cortex, 1991, 1, 426–432 http://dx.doi.org/10.1093/cercor/1.5.426CrossrefGoogle Scholar

  • [16] Casanova M.F., Daniel D.G., Goldberg T.E., Suddath R.L., Weinberger D.R., Shape analysis of the middle cranial fossa of schizophrenic patients: a computerized tomographic study, Schizophr. Res., 1989, 2, 333–338 http://dx.doi.org/10.1016/0920-9964(89)90024-8CrossrefGoogle Scholar

  • [17] Casanova M.F., Goldberg T.E., Suddath R.L., Daniel D.G., Rawlings R., Lloyd D.G., et al., Quantitative shape analysis of the temporal and prefrontal lobes in schizophrenic patients: a magnetic resonance image study, J. Neuropsychiatry Clin. Neurosci., 1990, 2, 363–372 Google Scholar

  • [18] Wang B., Shi C., A novel Fourier descriptor for shape retrieval, Fuzzy systems and knowledge discovery, Springer, New York, 2006, 822–825 Google Scholar

  • [19] Qiu A., Crocetti D., Adler M., Mahone E.M., Denckla M.B., Miller M.I., et al., Basal ganglia volume and shape in children with attention deficit hyperactivity disorder, Am. J. Psychiatry, 2009, 166, 74–82 http://dx.doi.org/10.1176/appi.ajp.2008.08030426CrossrefGoogle Scholar

  • [20] Casanova M.F., El-Baz A.S., Mott M., Mannheim G.B., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764 http://dx.doi.org/10.1007/s10803-008-0681-4CrossrefWeb of ScienceGoogle Scholar

  • [21] Bitter I., Kaufman A.E., Sato M., Penalized-distance volumetric skeleton algorithm, IEEE Trans. Vis. Comput. Graph., 2001, 7, 195–206 http://dx.doi.org/10.1109/2945.942688CrossrefGoogle Scholar

  • [22] Gagvani N., Silver D., Parameter-controlled volume thinning, Graph. Models Image Process., 1999, 61, 149–164 http://dx.doi.org/10.1006/gmip.1999.0495CrossrefGoogle Scholar

  • [23] Zhou Y., Toga A.W., Efficient skeletonization of volumetric objects, IEEE Trans. Vis. Comput. Graph., 1999, 5, 196–209 http://dx.doi.org/10.1109/2945.795212CrossrefGoogle Scholar

  • [24] Tsao Y.F., Fu K.S., A parallel thinning algorithm for 3-D pictures, Computer Graphics and Image Processing, 1981, 17, 315–331 http://dx.doi.org/10.1016/0146-664X(81)90011-3CrossrefGoogle Scholar

  • [25] Ma C.M., A 3D fully parallel thinning algorithm for generating medial faces, Pattern Recognition Letters, 1995, 16, 83–87 http://dx.doi.org/10.1016/0167-8655(94)00063-9CrossrefGoogle Scholar

  • [26] Ma C.M., Sonka M., A fully parallel 3D thinning algorithm and its applications, Computer Vision and Image Understanding, 1996, 64, 420–433 http://dx.doi.org/10.1006/cviu.1996.0069CrossrefGoogle Scholar

  • [27] Svensson S., Nyström I., Sanniti di Baja G., Curve skeletonization of surface-like objects in 3D images guided by voxel classification, Pattern Recognition Letters, 2002, 23, 1419–1426 http://dx.doi.org/10.1016/S0167-8655(02)00102-2CrossrefGoogle Scholar

  • [28] Ge Y., Stelts D.R., Wang J., Vining D.J., Computing the centerline of a colon: a robust and efficient method based on 3D skeletons, J. Comput. Assist. Tomogr., 1999, 23, 786–794 http://dx.doi.org/10.1097/00004728-199909000-00029CrossrefGoogle Scholar

  • [29] Deschamps T., Cohen L.D., Fast extraction of minimal paths in 3D images and applications to virtual endoscopy, Med. Image Anal., 2001, 5, 281–299 http://dx.doi.org/10.1016/S1361-8415(01)00046-9CrossrefGoogle Scholar

  • [30] Bouix S., Siddiqi K., Tannenbaum A., Flux driven fly throughs, in Computer Vision and Pattern Recognition. 2003, IEEE Computer Society. p. 449–454. Google Scholar

  • [31] Attali D., Montanvert A., Computing and simplifying 2D and 3D continuous skeletons, Computer Vision and Image Understanding, 1997, 67, 261–273 http://dx.doi.org/10.1006/cviu.1997.0536CrossrefGoogle Scholar

  • [32] Liu P.-C., Wu F.-C., Ma W.-C., Liang R.-H., Ouhyoung M., Automatic animation skeleton construction using repulsive force field, in Pacific Conference on Computer Graphics and Applications, J. Rokne, R. Klein, and W. Wang, Editors. 2003, IEEE. p. 409–413. Google Scholar

  • [33] Hynd G.W., Hall J., Novey E.S., Eliopulos D., Black K., Gonzalez J.J., et al., Dyslexia and corpus callosum morphology, Arch. Neurol., 1995, 52, 32–38 Google Scholar

  • [34] Rumsey J.M., Casanova M.F., Mannheim G.B., Patronas N., DeVaughn N., Hamburger S.D., et al., Corpus callosum morphology, as measured with MRI, in dyslexic men, Biol. Psychiatry, 1996, 39, 769–775 http://dx.doi.org/10.1016/0006-3223(95)00225-1CrossrefGoogle Scholar

  • [35] Viola P., Wells W.M., III, Alignment by maximization of mutual information, Proceedings of the International Conference on Computer Vision, 1995, 5, 20–23 Google Scholar

  • [36] Hassouna M.S., Farag A.A., Variational curve skeletons using gradient vector flow, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31, 2257–2274 http://dx.doi.org/10.1109/TPAMI.2008.271CrossrefWeb of ScienceGoogle Scholar

  • [37] Tsai A., Yezzi A., Jr., Wells W., Tempany C., Tucker D., Fan A., et al., A shape-based approach to the segmentation of medical imagery using level sets, IEEE Trans. Med. Imaging, 2003, 22, 137–154 http://dx.doi.org/10.1109/TMI.2002.808355CrossrefGoogle Scholar

  • [38] Cootes T.F., Taylor C.J., A mixture model for representing shape variation, Image and Vision Computing, 1999, 17, 567–573 http://dx.doi.org/10.1016/S0262-8856(98)00175-9CrossrefGoogle Scholar

  • [39] Benjamini Y., Hochberg Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 1995, 57, 289–300 Google Scholar

  • [40] Casanova M.F., Buxhoeveden D.P., Cohen M., Switala A.E., Roy E., Minicolumnar pathology in dyslexia, Ann. Neurol., 2002, 52, 108–110 http://dx.doi.org/10.1002/ana.10226CrossrefGoogle Scholar

  • [41] El-Zehiry N.Y., Casanova M.F., Hassan H., Farag A.A. Effect of minicolumnar disturbance on dyslexic brains: an MRI study. in Biomedical imaging: Macro to nano. 2006: IEEE. Google Scholar

  • [42] Abd El Munim H., Fahmi R., El-Zehiry N.Y., Farag A.A., Casanova M.F., Volumetric MRI analysis of dyslexic subjects using a level-set framework, In: J.S. Suri and A.A. Farag, (Eds.), Deformable models: Theory and biomaterial applications, Springer, New York, 2007, 461–492 Google Scholar

  • [43] Von Plessen K., Lundervold A., Duta N., Heiervang E., Klauschen F., Smievoll A.I., et al., Less developed corpus callosum in dyslexic subjects: a structural MRI study, Neuropsychologia, 2002, 40, 1035–1044 http://dx.doi.org/10.1016/S0028-3932(01)00143-9CrossrefGoogle Scholar

  • [44] Robichon F., Habib M., Abnormal callosal morphology in male adult dyslexics: relationships to handedness and phonological abilities, Brain Lang., 1998, 62, 127–146 http://dx.doi.org/10.1006/brln.1997.1891CrossrefGoogle Scholar

  • [45] Habib M., The neurological basis of developmental dyslexia: an overview and working hypothesis, Brain, 2000, 123, 2373–2399 http://dx.doi.org/10.1093/brain/123.12.2373CrossrefGoogle Scholar

  • [46] Robichon F., Bouchard P., Démonet J.-F., Habib M., Developmental dyslexia: re-evaluation of the corpus callosum in male adults, Eur. Neurol., 2000, 43, 233–237 http://dx.doi.org/10.1159/000008182CrossrefGoogle Scholar

  • [47] Duara R., Kushch A., Gross-Glenn K., Barker W.W., Jallad B., Pascal S., et al., Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans, Arch. Neurol., 1991, 48, 410–416 Google Scholar

  • [48] Cowell P.E., Jernigan T.L., Denenberg V.H., Tallal P., Language and learning impairment and prenatal risk: An MRI study of the corpus callosum and cerebral volume, J. Med. Speech-Lang. Pathol., 1995, 3, 1–13 Google Scholar

  • [49] Pennington B.F., Filipek P.A., Lefly D., Churchwell J., Kennedy D.N., Simon J.H., et al., Brain morphometry in reading-disabled twins, Neurology, 1999, 53, 723–729 CrossrefGoogle Scholar

About the article

Published Online: 2010-10-22

Published in Print: 2010-06-01


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/v10134-010-0017-8.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zhichao Xia, Fumiko Hoeft, Linjun Zhang, and Hua Shu
Neuropsychologia, 2016, Volume 81, Page 68
[2]
Matthew J. Nitzken, Manuel F. Casanova, Georgy Gimelfarb, Tamer Inanc, Jacek M. Zurada, and Ayman El-Baz
IEEE Journal of Biomedical and Health Informatics, 2014, Volume 18, Number 4, Page 1337
[3]
Emily Williams and Manuel Casanova
Journal of Special Education and Rehabilitation, 2012, Volume 13, Number 3-4
[4]
Manuel Martín-Loeches, Emiliano Bruner, José Manuel de la Cuétara, and Roberto Colom
Brain Structure and Function, 2013, Volume 218, Number 3, Page 721
[5]
Emily Williams, Ayman El-Baz, Matthew Nitzken, Andrew Switala, and Manuel Casanova
Translational Neuroscience, 2012, Volume 3, Number 1

Comments (0)

Please log in or register to comment.
Log in