Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Recent advances in the neurobiology of attachment behavior

Đurđica Šešo-Šimić / Goran Sedmak
  • Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Hof / Goran Šimić
  • Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-10-22 | DOI: https://doi.org/10.2478/v10134-010-0020-0

Abstract

In a biological sense an individual’s life is all about survival and reproduction. Beside the selection of a mate, the mutual commitment of a parent to sustain an infant through a period of dependency is amongst the most important aspects of natural selection. Here we review how the highly conserved circuitry of key midbrain and hypothalamic structures, and limbic and frontal cortical regions support these processes, and at the same time are involved in shaping the offspring’s emotional development and behavior. Many recent studies provided new findings on how attachment behavior and parental bonding is promoted and maintained through genetic and epigenetic influences on synaptic plasticity of mirror neurons and various neuropeptide systems, particularly oxytocinergic, and how these systems serve to link social cues to the brain reward system. Most of this evidence suggests that stress, early parental deprivation and lack of care during the postnatal period leads to profound and lasting changes in the attachment pattern and motivational development with consequent increased vulnerability of the mesocortical and mesolimbic dopamine-associated reward reinforcement pathways to psychosocial stressors, abuse of stimulants and psychopathology later in life.

Keywords: Aggressiveness; Attachment behavior; Autism; Dopamine; Emotional development Motivation; Oxytocin; Mirror neurons; Parental bonding; Psychopathology

  • [1] Sameroff A., A unified theory of development: a dialectic integration of nature and nurture, Child Dev., 2010, 81, 6–22 http://dx.doi.org/10.1111/j.1467-8624.2009.01378.xCrossrefGoogle Scholar

  • [2] Adolphs R., Cognitive neuroscience of human social behavior, Nature Neurosci., 2003, 4, 165–178 CrossrefGoogle Scholar

  • [3] Fagiolini M., Jensen C.L., Champagne F.A., Epigenetic influences on brain development and plasticity, Curr. Opin. Neurobiol., 2009, 19, 207–212 http://dx.doi.org/10.1016/j.conb.2009.05.009CrossrefGoogle Scholar

  • [4] Rutter M., Clinical implications of attachment concepts: retrospect and prospect, J. Child Psychol. Psychiatr., 1995, 36, 549–571 Google Scholar

  • [5] Cassidy J., The nature of child’s ties, In: Handbook of attachment: theory, research and clinical applications (eds. Cassidy J, Shaver PR), New York: Guilford Press, 1999, 3–20 Google Scholar

  • [6] Bowlby J., The nature of the child’s tie to his mother, Int. J. Psychoanal., 1958, 39, 350–373 Google Scholar

  • [7] Ainsworth M. D., Blehar M., Waters E., Wall S., Patterns of attachment: a psychological study of the Strange Situation, Hillsdale NJ: Lawrence Erlbaum Associates, 1978 Google Scholar

  • [8] Weinfield N. S., Sroufe L.A., Egeland B., Carlson E., Individual differences in infant-caregiver attachment, In: Handbook of attachment: theory, research and clinical applications (eds. Cassidy J, Shaver PR), New York and London: Guilford Press, 2008, 78–101 Google Scholar

  • [9] Main M., Solomon J., Discovery of an insecure disoriented attachment pattern: procedures, findings and implications for the classification of behavior, In: Affective development in infancy (eds. Brazelton T, Youngman M), Norwood, NJ: Ablex, 1986 Google Scholar

  • [10] Prior V., Glaser D., Understanding attachment and attachment disorders: theory, evidence, and practice, Jessica Kingsley Publishers: London and Philadelphia, 2006 Google Scholar

  • [11] Karen R., Becoming attached: first relationships and how they shape our capacity to love, New York: Oxford University Press, 1994 Google Scholar

  • [12] Marvin R. S., Britner P.A., Normative development: the ontogeny of attachment, In: Handbook of attachment: theory, research and clinical applications (eds. Cassidy J, Shaver PR), New York and London: Guilford Press, 2008, 269–294 Google Scholar

  • [13] Kobak R., Madsen S., Disruption in attachment bonds, In: Handbook of attachment: theory, research and clinical applications (eds. Cassidy J, Shaver PR), New York and London: Guilford Press, 2008, 23–47 Google Scholar

  • [14] Fraley R. C., Shaver P.R., Adult romantic attachment: theoretical developments, emerging controversies, and unanswered questions, Rev. Gen. Psychol., 2000, 4, 132–154 http://dx.doi.org/10.1037/1089-2680.4.2.132CrossrefGoogle Scholar

  • [15] Rholes W. S., Simpson J.A., Attachment theory: basic concepts and contemporary questions, In: Adult attachment: theory, research, and clinical implications (Rholes WS, Simpson JA, eds), New York: Guilford Press, 2004, 3–14 Google Scholar

  • [16] Main M., Kaplan N., Cassidy J., Security in infancy, childhood and adulthood: a move to the level of representation, In: Growing points of attachment theory and research (Bretherton I, Waters E, eds), Chicago: University of Chicago Press, 1985 Google Scholar

  • [17] Steele H., Steele M., Fonagy P., Associations among attachment classifications of mothers, fathers, and their infants, Child Dev., 1996, 67, 541–555 http://dx.doi.org/10.2307/1131831CrossrefGoogle Scholar

  • [18] Wise R. A., Bozarth M.A., Brain reward circuitry: four circuit elements „wired” in apparent series, Brain Res. Bull., 1984, 12, 203–208 http://dx.doi.org/10.1016/0361-9230(84)90190-4CrossrefGoogle Scholar

  • [19] Arrias-Carrión O., Pŏppel E., Dopamine, learning, and reward-seeking behavior, Acta Neurobiol. Exp., 2007, 67, 481–488 Google Scholar

  • [20] Burgdorf J., Panksepp J., The neurobiology of positive emotions, Neurosci. Biobehav. Rev. 2006, 30, 173–187 http://dx.doi.org/10.1016/j.neubiorev.2005.06.001CrossrefGoogle Scholar

  • [21] Olds J., Milner P., Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain, J. Comp. Physiol. Psychol., 1954, 47, 419–427 http://dx.doi.org/10.1037/h0058775CrossrefGoogle Scholar

  • [22] Olds M. E., Olds J., Emotional and associative mechanisms in the rat brain, J. Comp. Physiol. Psychol., 1961, 54,120–26 http://dx.doi.org/10.1037/h0043045CrossrefGoogle Scholar

  • [23] Moan C. E., Heath R.G., Septal stimulation for the initiation of heterosexual activity in a homosexual male, J. Behav. Ther. Exp. Psychiatr., 1972, 3, 23–30 http://dx.doi.org/10.1016/0005-7916(72)90029-8CrossrefGoogle Scholar

  • [24] Gardner E. L., Lowinson J.H., Drug craving and positive/negative hedonic brain substrates activated by addicting drugs, Sem. Neurosci., 1993, 5, 359–368 http://dx.doi.org/10.1016/S1044-5765(05)80044-2CrossrefGoogle Scholar

  • [25] Giros B., Jaber M., Jones S.R., Wightman R.M., Caron M.G., Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter, Nature, 379, 606–612 Google Scholar

  • [26] Wise R. A., Dopamine, learning and motivation, Nat. Rev. Neurosci., 2004, 5, 483–494 http://dx.doi.org/10.1038/nrn1406CrossrefGoogle Scholar

  • [27] Lisman J. E., Grace A.A., The hippocampal-VTA loop: controlling the entry of information into long-term memory, Neuron, 2005, 46, 703–713 http://dx.doi.org/10.1016/j.neuron.2005.05.002CrossrefGoogle Scholar

  • [28] Pierce R.C., Kumaresan V., The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse?, Neurosci. Biobehav. Rev. 2006, 30, 215–238 http://dx.doi.org/10.1016/j.neubiorev.2005.04.016CrossrefGoogle Scholar

  • [29] Rothman R. B., Baumann M.H., Balance between dopamine and serotonin release modulates behavioral effects of amphetaminetype drugs, Ann. N.Y. Acad. Sci., 2006, 1074, 245–260 http://dx.doi.org/10.1196/annals.1369.064CrossrefGoogle Scholar

  • [30] Kahlig K. M., Binda F., Khoshbouei H., Amphetamine induces dopamine efflux through a dopamine transporter channel, Proc. Natl. Acad. Sci. USA, 2005, 102, 3495–3500 http://dx.doi.org/10.1073/pnas.0407737102CrossrefGoogle Scholar

  • [31] Gonzales R. A., Job M.O., Doyon W.M., The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement, Pharmacol. Ther., 2004, 103, 121–146 http://dx.doi.org/10.1016/j.pharmthera.2004.06.002CrossrefGoogle Scholar

  • [32] Gardner E. L., Endocannabinoid signaling system and brain reward: emphasis on dopamine, Pharmacol. Biochem. Behav., 2005, 81, 263–284 http://dx.doi.org/10.1016/j.pbb.2005.01.032CrossrefGoogle Scholar

  • [33] Schultz W., Dayan P., Montague P.R., A neural substrate of prediction and reward, Science, 1997, 275, 1593–1599 http://dx.doi.org/10.1126/science.275.5306.1593CrossrefGoogle Scholar

  • [34] Schultz W., Behavioral theories and the neurophysiology of reward, Annu. Rev. Psychol. 2006, 57, 87–115 http://dx.doi.org/10.1146/annurev.psych.56.091103.070229CrossrefGoogle Scholar

  • [35] Bromm B., Brain images of pain, News Physiol. Sci., 2001, 16, 244–249 Google Scholar

  • [36] Kringelbach M. L., Rolls E.T., The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology, Prog. Neurobiol., 2004, 72, 341–372 http://dx.doi.org/10.1016/j.pneurobio.2004.03.006CrossrefGoogle Scholar

  • [37] Hof P. R., Mufson E.J., Morrison J.H., Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation, J. Comp. Neurol., 1995, 359, 48–68 http://dx.doi.org/10.1002/cne.903590105CrossrefGoogle Scholar

  • [38] Kringelbach M. L., The human orbitofrontal cortex: linking reward to hedonic experience, Nat. Rev. Neurosci., 2005, 6, 691–702 http://dx.doi.org/10.1038/nrn1747CrossrefGoogle Scholar

  • [39] Gogtay N., Giedd J.N., Lusk L., Hayashi K.M., Greenstein D., Vaituzis A.C., et al., Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA, 2004, 101, 8174–8179 http://dx.doi.org/10.1073/pnas.0402680101CrossrefGoogle Scholar

  • [40] Brake W. G., Zhang T.Y., Diorio J., Meaney M.J., Gratton A., Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioral responses to psychostimulants and stressors in adult rats, Eur. J. Neurosci., 2004, 19, 1863–1874 http://dx.doi.org/10.1111/j.1460-9568.2004.03286.xCrossrefGoogle Scholar

  • [41] Anderson M. C., Ochsner K.N., Kuhl B., Cooper J., Robertson E., Gabrieli S.W. et al., Neural systems undelying the suppression of unwanted memories, Science, 2004, 303, 232–235 http://dx.doi.org/10.1126/science.1089504CrossrefGoogle Scholar

  • [42] Bauer H., Pripfl J., Lamm C., Prainsack C., Taylor N., Functional neuroanatomy of learned helplessness, Neuroimage, 2003, 20, 927–939 http://dx.doi.org/10.1016/S1053-8119(03)00363-XCrossrefGoogle Scholar

  • [43] Siegal M., Varley R., Neural systems involved in ‘theory of mind’, Nat. Rev. Neurosci. 2002, 3, 463–471 Google Scholar

  • [44] Di Pellegrino G., Fadiga L., Fogassi L., Gallese V., Rizzolatti G., Understanding motor events: a neurophysiological study, Exp. Brain Res., 1992, 91, 176–180 http://dx.doi.org/10.1007/BF00230027CrossrefGoogle Scholar

  • [45] Rizzolatti G., Fabbri-Destro M., Mirror neurons: from discovery to autism, Exp. Brain Res., 2010, 200, 223–237 http://dx.doi.org/10.1007/s00221-009-2002-3CrossrefGoogle Scholar

  • [46] Rizzolatti G., Craighero L., The mirror-neuron system, Annu. Rev. Neurosci., 2004, 27, 169–179 http://dx.doi.org/10.1146/annurev.neuro.27.070203.144230CrossrefGoogle Scholar

  • [47] Fabbri-Destro M., Rizzolatti G., The mirror system in monkeys and humans, Physiology, 2008, 23, 171–179 http://dx.doi.org/10.1152/physiol.00004.2008CrossrefGoogle Scholar

  • [48] Iacoboni M., Imitation, empathy, and mirror neurons, Annu. Rev. Psychol., 2009, 60, 653–670 http://dx.doi.org/10.1146/annurev.psych.60.110707.163604CrossrefGoogle Scholar

  • [49] Rizzolatti G., Arbib M.A., Language within our grasp, Trends Neurosci., 1998, 21, 188–194 http://dx.doi.org/10.1016/S0166-2236(98)01260-0CrossrefGoogle Scholar

  • [50] Fadiga L., Craighero L., Buccino G., Rizzolatti G., Speech listening specifically modulates the excitability of tongue muscles: s TMS study, Eur. J. Neurosci., 2002, 15, 399–402 http://dx.doi.org/10.1046/j.0953-816x.2001.01874.xCrossrefGoogle Scholar

  • [51] Watkins K. E., Strafella A.P., Paus T., Seeing and hearing speech excites the motor system involved in speech production, Neuropsychologia, 2003, 41, 989–994 http://dx.doi.org/10.1016/S0028-3932(02)00316-0CrossrefGoogle Scholar

  • [52] Wilson S. M., Saygin A.P., Sereno M.I., Iacoboni M., Listening to speech activates motor areas involved in speech production, Nat. Neurosci., 2004, 7, 701–702 http://dx.doi.org/10.1038/nn1263CrossrefGoogle Scholar

  • [53] Carr L., Iacoboni M., Dubeau M.C., Mazziotta J.C., Lenzi G.L., Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas, Proc. Natl. Acad. Sci. USA, 2003, 100, 5497–5502 http://dx.doi.org/10.1073/pnas.0935845100CrossrefGoogle Scholar

  • [54] Lenzi D., Trentini C., Pantano P., Macaluso E., Iacoboni M., Lenzi G.I., et al., Neural basis of maternal communication and emotional expression processing during infant preverbal stage, Cereb. Cortex, 2009, 19, 1124–1133 http://dx.doi.org/10.1093/cercor/bhn153CrossrefGoogle Scholar

  • [55] Williams J. H.G., Whiten A., Suddendorf T., Perrett D.I., Imitation, mirror neurons, and autism, Neurosci. Biobehav. Rev., 2001, 25, 287–295 http://dx.doi.org/10.1016/S0149-7634(01)00014-8CrossrefGoogle Scholar

  • [56] Iacoboni M., Dapretto M., The mirror neurons system and the consequences of its dysfunction, Nat. Rev. Neurosci., 2006, 7, 942–951 http://dx.doi.org/10.1038/nrn2024CrossrefGoogle Scholar

  • [57] Rizzolatti G., Fabbri-Destro M., Cattaneo L., Mirror neurons and their clinical relevance, Nat. Clin. Pract. Neurol., 2009, 5, 24–34 http://dx.doi.org/10.1038/ncpneuro0990CrossrefGoogle Scholar

  • [58] Dapretto M., Davies M.S., Pfeifer J.H., Scott A.A., Sigman M., Bookheimer S.Y. et al., Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorder, Nat. Neurosci., 2006, 9, 28–30 http://dx.doi.org/10.1038/nn1611CrossrefGoogle Scholar

  • [59] Darwin C. R., The expression of emotions in man and animals, London: John Murray, 1872 http://dx.doi.org/10.1037/10001-000CrossrefGoogle Scholar

  • [60] Plutchik R., Outlines of a new theory of emotion, Trans. NY Acad. Sci., 1958, 20, 394–403 CrossrefGoogle Scholar

  • [61] Russell P. A., A circumplex model of affect, J. Pers. Soc. Psychol., 1971, 39, 1161–1178 Google Scholar

  • [62] Kolb B., Whishaw I.Q. (eds.), Fundamentals of human neuropsychology, 6th edition, Worth Publishers, 2008 Google Scholar

  • [63] Ekman P., Friesen W.V., Constants across culture in the face and emotion, J. Pers. Soc. Psychol., 1971, 17, 124–129 http://dx.doi.org/10.1037/h0030377CrossrefGoogle Scholar

  • [64] Shaffer D. R., Social and personality development, 6th edition, Belmont, CA: Wadsworth, 2009 Google Scholar

  • [65] Oster H., Emotion in the infant’s face: insights from the study of infants with facial anomalies, Ann. NY Acad. Sci., 2003, 1000, 197–204 http://dx.doi.org/10.1196/annals.1280.024CrossrefGoogle Scholar

  • [66] Feldman R., Weller A., Zagoory-Sharon O., Levine A., Evidence for a neuroendocrinological foundation of human affiliation: plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding, Psychol. Sci., 2007, 18, 965–970 http://dx.doi.org/10.1111/j.1467-9280.2007.02010.xCrossrefGoogle Scholar

  • [67] Baumgartner T., Heinrichs M., Vonlanthen A., Fischbacher U., Fehr E, Oxytocin shapes the neural circuitry of trust and trust adaptation in humans, Neuron, 2008, 58, 639–650 http://dx.doi.org/10.1016/j.neuron.2008.04.009CrossrefGoogle Scholar

  • [68] Guastella A. J., Mitchell P.B., Dadds M.R., Oxytocin increases gaze to the eye region of human faces, Biol. Psychiatry, 2008, 63, 3–5 http://dx.doi.org/10.1016/j.biopsych.2007.06.026CrossrefGoogle Scholar

  • [69] Olazábal D. E., Young L.J., Oxytocin receptors in the nucleus accumbens facilitate „spontaneous“ maternal behavior in adult female prarie voles, Neuroscience, 2006, 141, 559–568 http://dx.doi.org/10.1016/j.neuroscience.2006.04.017CrossrefGoogle Scholar

  • [70] Strathearn L., Fonagy P., Amico J., Montague P.R., Adult attachment predicts maternal brain and oxytocin response to infant cues, Neuropsychopharmacology, 2009, 34, 2655–2666 http://dx.doi.org/10.1038/npp.2009.103CrossrefGoogle Scholar

  • [71] Bales K. L., van Westerhuyzen J.A., Lewis-Reese A.D., Grotte N.D., Lanter J.A., Carter C.S., Oxytocin has dose-dependent developmental effects on pair-bonding and alloparental care in female prairie voles, Horm. Behav., 2007, 52, 274–279 http://dx.doi.org/10.1016/j.yhbeh.2007.05.004CrossrefGoogle Scholar

  • [72] Ahern T.H., Young L.J., The impact of early life family structure on adult social attachment, alloparental behavior, and the neuropeptide systems regulating affiliative behaviors in the monogamous prairie vole (Microtus ochrogaster), Front. Behav. Neurosci., 2009, 3, 1–19 http://dx.doi.org/10.3389/neuro.08.017.2009CrossrefGoogle Scholar

  • [73] Modahl C., Green L., Fein D., Morris M., Waterhouse L., Feinstein C., et al., Plasma oxytocin levels in autistic children, Biol. Psychiatry, 1998, 43, 270–277 http://dx.doi.org/10.1016/S0006-3223(97)00439-3CrossrefGoogle Scholar

  • [74] Hollander E., Bartz J., Chaplin W., Phillips A., Sumner J., Soorya L., et al., Oxytocin increases retention of social cognition in autism, Biol. Psychiatry, 2007, 61, 498–503 http://dx.doi.org/10.1016/j.biopsych.2006.05.030CrossrefGoogle Scholar

  • [75] Fries A. B., Ziegler T.E., Kurian J.R., Jacoris S., Pollak S.D., Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior, Proc. Natl. Acad. Sci. USA, 2005, 102, 17237–17240 http://dx.doi.org/10.1073/pnas.0504767102CrossrefGoogle Scholar

  • [76] Chugani H. T., Behen M.E., Muzik O., Juhász C., Nagy F., Chugani D.C., Local brain functional activity following early deprivations: a study of post-institutionalized Romanian orphans, Neuroimage, 2001, 14, 1290–1301 http://dx.doi.org/10.1006/nimg.2001.0917CrossrefGoogle Scholar

  • [77] Heim C., Young L.J., Newport D.J., Mletzko T., Miller A.H., Nemeroff C.B., Lower CSF oxytocin concentrations in women with a history of childhood abuse, Mol. Psychiatry, 2009, 14, 954–958 http://dx.doi.org/10.1038/mp.2008.112CrossrefGoogle Scholar

  • [78] Gordon I., Zagoory-Sharon O., Leckman J.F., Feldman R., Prolactin, oxytocin, and the development of paternal behavior across the first six months of fatherhood, Horm. Behav., 2010, Epub ahead of print CrossrefGoogle Scholar

  • [79] Nagasawa M, Kikusui T, Onaka T, Ohta M, Dog’s gaze at its owner increases owner’s urinary oxytocin during social interaction, Horm. Behav., 2009, 55, 434–441 http://dx.doi.org/10.1016/j.yhbeh.2008.12.002CrossrefGoogle Scholar

  • [80] Neumann I. D., The advantage of social living: brain neuropeptides mediate the beneficial consequences of sex and motherhood, Front. Bioendocrinol., 2009, 30, 483–496 http://dx.doi.org/10.1016/j.yfrne.2009.04.012CrossrefGoogle Scholar

  • [81] Leckman J. F., Herman A.E., Maternal behavior and developmental psychopathology, Biol. Psychiatry, 2002, 51, 27–43 http://dx.doi.org/10.1016/S0006-3223(01)01277-XCrossrefGoogle Scholar

  • [82] Gammie S. C., Bethea E.D., Stevenson S.A., Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice, BMC Neurosci, 2007, 8, 17 doi:10. 1186/1471-2202-8-17 http://dx.doi.org/10.1186/1471-2202-8-17CrossrefGoogle Scholar

  • [83] Gammie S. C., Seasholtz A.F., Stevenson S.A., Deletion of corticotropinreleasing factor binding protein selectively impairs maternal, but not intermale aggression, Neuroscience, 2008, 157, 502–512 http://dx.doi.org/10.1016/j.neuroscience.2008.09.026CrossrefGoogle Scholar

  • [84] Hansen N. S., Gammie S.C., Trpc 2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity, Gene Brain Behav, 2009, 8, 639–649 http://dx.doi.org/10.1111/j.1601-183X.2009.00511.xCrossrefGoogle Scholar

  • [85] Caspi A., McClay J., Moffitt T.E., Mill J., Martin J., Craig I.W., et al., Role of genotype in the cycle of violence in maltreated children, Science, 2002, 297, 851–854 http://dx.doi.org/10.1126/science.1072290CrossrefGoogle Scholar

  • [86] Nelson R. J., Trainor B.C., Neural mechanisms of aggression, Nat. Rev. Neurosci., 2007, 8, 536–546 http://dx.doi.org/10.1038/nrn2174CrossrefGoogle Scholar

  • [87] Pedersen C. A., Biological aspects of social bonding and the roots of human violence, Ann NY Acad SCI, 2004, 1036, 106–127 http://dx.doi.org/10.1196/annals.1330.006CrossrefGoogle Scholar

  • [88] Anderson S. W., Bechara A., Damasio H., Tranel D., Damasio A.R., Impairment of social and moral behavior related to early damage in human prefrontal cortex, Nat. Neurosci., 1999, 2, 1032–1037 http://dx.doi.org/10.1038/12194CrossrefGoogle Scholar

  • [89] Raine A., Lencz T., Bihrle S., LaCasse L., Coilletti P., Reduced prefrontal grey matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 2000, 57, 119–127 http://dx.doi.org/10.1001/archpsyc.57.2.119CrossrefGoogle Scholar

  • [90] Kiehl K. A., Smith A.M., Hare R.D., Mendrek A, Forster B.B., Brink J., et al., Limbic abnormalities in affective processing by criminal psychopats as revealed by functional magnetic resonance imaging, Biol Psychiatry 2001, 50, 677–684 http://dx.doi.org/10.1016/S0006-3223(01)01222-7CrossrefGoogle Scholar

  • [91] Le Doux J. E., Emotion circuits in the brain, Annu. Rev. Neurosci., 2000, 24, 155–184 http://dx.doi.org/10.1146/annurev.neuro.23.1.155CrossrefGoogle Scholar

  • [92] Mueller B. R., Bale T.L., Sex-specific programming of offspring emotionality after stress early in pregnancy, J. Neurosci., 2008, 28, 9055–9065 http://dx.doi.org/10.1523/JNEUROSCI.1424-08.2008CrossrefGoogle Scholar

  • [93] Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ, Maternal care associated with methylation of the estrogen receptoralpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring, Endocrinology, 2006, 147, 2909–2915 http://dx.doi.org/10.1210/en.2005-1119CrossrefGoogle Scholar

  • [94] Weaver I. C., Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl J.R., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, 7, 847–854 http://dx.doi.org/10.1038/nn1276CrossrefGoogle Scholar

  • [95] Oberlander T. F., Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin A.M., Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR 3C1) and infant cortisol stress responses, Epigenetics, 2008, 3, 97–106 http://dx.doi.org/10.4161/epi.3.2.6034CrossrefGoogle Scholar

  • [96] Roth TL, Lubin FD, Funk AJ, Sweatt JD, Lasting epigenetic influence of early-life adversity on the BDNF gene, Biol. Psychiatry, 2009, 65, 760–769 http://dx.doi.org/10.1016/j.biopsych.2008.11.028CrossrefGoogle Scholar

  • [97] Champagne DL, Bagot RC, van Hasselt F, Ramakers G, Meaney MJ, de Kloet ER, et al., Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress, J. Neurosci., 2008, 28, 6037–6045 http://dx.doi.org/10.1523/JNEUROSCI.0526-08.2008CrossrefGoogle Scholar

  • [98] Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH, Recovery of learning and memory is associated with chromatin remodelling, Nature, 2007, 447, 178–182 http://dx.doi.org/10.1038/nature05772CrossrefGoogle Scholar

  • [99] Arai JA, Li S, Hartley DM, Feig LA, Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment, J. Neurosci., 2009, 29, 1496–1502 http://dx.doi.org/10.1523/JNEUROSCI.5057-08.2009CrossrefGoogle Scholar

  • [100] Zhou Z., Hong E.J., Cohen S., Zhao W.N., Ho H.Y., Schmidt L., et al., Brain-specific phosphorylation of MeCP 2 regulates activitydependent BDNF transcription, dendritic growth, and spine maturation, Neuron, 2006, 52, 255–269 http://dx.doi.org/10.1016/j.neuron.2006.09.037Google Scholar

  • [101] Nelson E. D., Kavalali E.T., Monteggia L.M., Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation, J. Neurosci., 2008, 28, 395–406 http://dx.doi.org/10.1523/JNEUROSCI.3796-07.2008CrossrefGoogle Scholar

  • [102] Moretti P, Zoghbi H. Y., MeCP2 dysfunction in Rett syndrome and related disorders, Curr. Opin. Genet. Dev., 2006, 16, 276–281 http://dx.doi.org/10.1016/j.gde.2006.04.009CrossrefGoogle Scholar

  • [103] Adachi M, Autry A. E., Covington H.E., Monteggia L.M., MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome, J. Neurosci., 2009, 29, 4218–4227 http://dx.doi.org/10.1523/JNEUROSCI.4225-08.2009CrossrefGoogle Scholar

  • [104] Leslie K. R., Johnson-Frey S.H., Grafton S.T., Functional imaging of face and hand imitation: towards a motor theory of empathy, Neuroimage, 2004, 21, 601–607 http://dx.doi.org/10.1016/j.neuroimage.2003.09.038CrossrefGoogle Scholar

About the article

Published Online: 2010-10-22

Published in Print: 2010-06-01


Citation Information: Translational Neuroscience, Volume 1, Issue 2, Pages 148–159, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/v10134-010-0020-0.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Karen A. Myors, Michelle Cleary, Maree Johnson, and Virginia Schmied
Issues in Mental Health Nursing, 2017, Page 1
[2]
Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles R. Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan de Silva, Giuseppe Di Giovanni, Claude M. Wischik, and Patrick R. Hof
Progress in Neurobiology, 2017, Volume 151, Page 101
[3]
Dora Polšek, Tomislav Jagatic, Maja Cepanec, Patrick Hof, and Goran Šimić
Translational Neuroscience, 2011, Volume 2, Number 3
[4]
Mihovil Mladinov, Davor Mayer, Luka Brčić, Elizabeth Wolstencroft, Nguyen Man, Ian Holt, Patrick Hof, Glenn Morris, and Goran Šimić
Translational Neuroscience, 2010, Volume 1, Number 3

Comments (0)

Please log in or register to comment.
Log in