Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Treatment strategies for spinal muscular atrophy

Heidi Fuller
  • Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK
  • Institute of Science and Technology in Medicine, Keele University, Keele, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marija Barišić / Đurđica Šešo-Šimić / Tea Špeljko
  • Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Glenn Morris
  • Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK
  • Institute of Science and Technology in Medicine, Keele University, Keele, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Goran Šimić
  • Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-12-31 | DOI: https://doi.org/10.2478/v10134-010-0045-4

Abstract

Progress in understanding the genetic basis and pathophysiology of spinal muscular atrophy (SMA), along with continuous efforts in finding a way to increase survival motor neuron (SMN) protein levels have resulted in several strategies that have been proposed as potential directions for efficient drug development. Here we provide an overview on the current status of the following approaches: 1) activation of SMN2 gene and increasing full length SMN2 transcript level, 2) modulating SMN2 splicing, 3) stabilizing SMN mRNA and SMN protein, 4) development of neurotrophic, neuroprotective and anabolic compounds and 5) stem cell and gene therapy. The new preclinical advances warrant a cautious optimism for emergence of an effective treatment in the very near future.

Keywords: Clinical trials; Spinal muscular atrophy; SMN1 gene; SMN2 gene; SMN protein; Treatment; Therapy

  • [1] Botta A., Tacconelli A., Bagni I., Giardina E., Bonifazi E., Pietropolli A., et al., Transmission ratio distortion in the spinal muscular atrophy locus: data from 314 prenatal tests, Neurology, 2005, 65, 1631–1635 http://dx.doi.org/10.1212/01.wnl.0000184506.61354.5bCrossrefGoogle Scholar

  • [2] Bromberg M. B., Swoboda K. J., Motor unit number estimation in infants and children with spinal muscular atrophy, Muscle Nerve, 2002, 25, 445–447 http://dx.doi.org/10.1002/mus.10050CrossrefGoogle Scholar

  • [3] Crawford T. O., Pardo C. A., The neurobiology of childhood spinal muscular atrophy, Neurobiol Dis, 1996, 3, 97–110 http://dx.doi.org/10.1006/nbdi.1996.0010CrossrefGoogle Scholar

  • [4] Dubowitz, Disorders of the lower motor neuron, the spinal muscular atrophy, 1995, in: Dubowitz (ed), Muscle disorders in childhood, Saunders, London, 325–369 Google Scholar

  • [5] Greenfield J.C., Stern R.O., The anatomical identity of the Werdnig-Hoffmann and Oppenheim forms of infantile muscular atrophy, Brain, 1927, 50, 652–686 http://dx.doi.org/10.1093/brain/50.3-4.652CrossrefGoogle Scholar

  • [6] Pearn J., Classification of spinal muscular atrophies, Lancet, 1980, 1, 919–922 http://dx.doi.org/10.1016/S0140-6736(80)90847-8CrossrefGoogle Scholar

  • [7] Simic G., Pathogenesis of proximal autosomal recessive spinal muscular atrophy, Acta Neuropathol, 2008, 116, 223–234 http://dx.doi.org/10.1007/s00401-008-0411-1CrossrefGoogle Scholar

  • [8] Zerres K., Rudnik-Schoneborn S., Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications, Arch Neurol, 1995, 52, 518–523 CrossrefGoogle Scholar

  • [9] Wharton S., Ince P.G., Pathology of motor neuron disorders, 2003. In: Shaw P.J., Strong M.J. (eds) Motor neuron disorders. Blue books of practical neurology, book 28. Butterworth-Heineman, Elsevier Science, Philadelphia, pp 17–49 Google Scholar

  • [10] Burglen L., Lefebvre S., Clermont O., Burlet P., Viollet L., Cruaud C., et al., Structure and organization of the human survival motor neurone (SMN) gene, Genomics, 1996, 32, 479–482 http://dx.doi.org/10.1006/geno.1996.0147CrossrefGoogle Scholar

  • [11] Parsons D. W., McAndrew P. E., Iannaccone S. T., Mendell J. R., Burghes A. H., Prior T. W., Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number, Am J Hum Genet, 1998, 63, 1712–1723 http://dx.doi.org/10.1086/302160CrossrefGoogle Scholar

  • [12] Brahe C., Bertini E., Spinal muscular atrophies: recent insights and impact on molecular diagnosis, J Mol Med, 1996, 74, 555–562 http://dx.doi.org/10.1007/s001090050059CrossrefGoogle Scholar

  • [13] DiMatteo D., Callahan S., Kmiec E. B., Genetic conversion of an SMN2 gene to SMN1: a novel approach to the treatment of spinal muscular atrophy, Exp Cell Res, 2008, 314, 878–886 http://dx.doi.org/10.1016/j.yexcr.2007.10.012CrossrefGoogle Scholar

  • [14] Monani U. R., Lorson C. L., Parsons D. W., Prior T. W., Androphy E. J., Burghes A. H., et al., A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2, Hum Mol Genet, 1999, 8, 1177–1183 http://dx.doi.org/10.1093/hmg/8.7.1177Google Scholar

  • [15] Brahe C., Copies of the survival motor neuron gene in spinal muscular atrophy: the more, the better, Neuromuscul Disord, 2000, 10, 274–275 http://dx.doi.org/10.1016/S0960-8966(99)00137-6CrossrefGoogle Scholar

  • [16] Feldkotter M., Schwarzer V., Wirth R., Wienker T. F., Wirth B., Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy, Am J Hum Genet, 2002, 70, 358–368 http://dx.doi.org/10.1086/338627CrossrefGoogle Scholar

  • [17] Mailman M. D., Heinz J. W., Papp A. C., Snyder P. J., Sedra M. S., Wirth B., et al., Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2, Genet Med, 2002, 4, 20–26 http://dx.doi.org/10.1097/00125817-200201000-00004CrossrefGoogle Scholar

  • [18] McAndrew P. E., Parsons D. W., Simard L. R., Rochette C., Ray P. N., Mendell J. R., et al., Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number, Am J Hum Genet, 1997, 60, 1411–1422 http://dx.doi.org/10.1086/515465CrossrefGoogle Scholar

  • [19] Wirth B., Brichta L., Schrank B., Lochmuller H., Blick S., Baasner A., et al., Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number, Hum Genet, 2006, 119, 422–428 http://dx.doi.org/10.1007/s00439-006-0156-7CrossrefGoogle Scholar

  • [20] Sumner C. J., Therapeutics development for spinal muscular atrophy, NeuroRx, 2006, 3, 235–245 http://dx.doi.org/10.1016/j.nurx.2006.01.010CrossrefGoogle Scholar

  • [21] Oskoui M., Kaufmann P., Spinal muscular atrophy, Neurotherapeutics, 2008, 5, 499–506 http://dx.doi.org/10.1016/j.nurt.2008.08.007CrossrefGoogle Scholar

  • [22] Oskoui M., Levy G., Garland C. J., Gray J. M., O’Hagen J., De Vivo D. C., et al., The changing natural history of spinal muscular atrophy type 1, Neurology, 2007, 69, 1931–1936 http://dx.doi.org/10.1212/01.wnl.0000290830.40544.b9CrossrefGoogle Scholar

  • [23] Wang C. H., Finkel R. S., Bertini E. S., Schroth M., Simonds A., Wong B., et al., Consensus statement for standard of care in spinal muscular atrophy, J Child Neurol, 2007, 22, 1027–1049 http://dx.doi.org/10.1177/0883073807305788CrossrefGoogle Scholar

  • [24] Echaniz-Laguna A., Miniou P., Bartholdi D., Melki J., The promoters of the survival motor neuron gene (SMN) and its copy (SMNc) share common regulatory elements, Am J Hum Genet, 1999, 64, 1365–1370 http://dx.doi.org/10.1086/302372CrossrefGoogle Scholar

  • [25] Baron-Delage S., Abadie A., Echaniz-Laguna A., Melki J., Beretta L., Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes, Mol Med, 2000, 6, 957–968 Google Scholar

  • [26] Rouget R., Vigneault F., Codio C., Rochette C., Paradis I., Drouin R., et al., Characterization of the survival motor neuron (SMN) promoter provides evidence for complex combinatorial regulation in undifferentiated and differentiated P19 cells, Biochem J, 2005, 385, 433–443 http://dx.doi.org/10.1042/BJ20041024CrossrefGoogle Scholar

  • [27] Kernochan L. E., Russo M. L., Woodling N. S., Huynh T. N., Avila A. M., Fischbeck K. H., et al., The role of histone acetylation in SMN gene expression, Hum Mol Genet, 2005, 14, 1171–1182 http://dx.doi.org/10.1093/hmg/ddi130CrossrefGoogle Scholar

  • [28] Lunke S., El-Osta A., The emerging role of epigenetic modifications and chromatin remodeling in spinal muscular atrophy, J Neurochem, 2009, 109, 1557–1569 http://dx.doi.org/10.1111/j.1471-4159.2009.06084.xCrossrefGoogle Scholar

  • [29] Chang J. G., Hsieh-Li H. M., Jong Y. J., Wang N. M., Tsai C. H., Li H., Treatment of spinal muscular atrophy by sodium butyrate, Proc Natl Acad Sci U S A, 2001, 98, 9808–9813 http://dx.doi.org/10.1073/pnas.171105098CrossrefGoogle Scholar

  • [30] Miller A. A., Kurschel E., Osieka R., Schmidt C. G., Clinical pharmacology of sodium butyrate in patients with acute leukemia, Eur J Cancer Clin Oncol, 1987, 23, 1283–1287 http://dx.doi.org/10.1016/0277-5379(87)90109-XCrossrefGoogle Scholar

  • [31] Andreassi C., Angelozzi C., Tiziano F. D., Vitali T., De Vincenzi E., Boninsegna A., et al., Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy, Eur J Hum Genet, 2004, 12, 59–65 http://dx.doi.org/10.1038/sj.ejhg.5201102CrossrefGoogle Scholar

  • [32] Brahe C., Vitali T., Tiziano F. D., Angelozzi C., Pinto A. M., Borgo F., et al., Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients, Eur J Hum Genet, 2005, 13, 256–259 http://dx.doi.org/10.1038/sj.ejhg.5201320CrossrefGoogle Scholar

  • [33] Mercuri E., Bertini E., Messina S., Pelliccioni M., D’Amico A., Colitto F., et al., Pilot trial of phenylbutyrate in spinal muscular atrophy, Neuromuscul Disord, 2004, 14, 130–135 http://dx.doi.org/10.1016/j.nmd.2003.11.006CrossrefGoogle Scholar

  • [34] Mercuri E., Bertini E., Messina S., Solari A., D’Amico A., Angelozzi C., et al., Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy, Neurology, 2007, 68, 51–55 http://dx.doi.org/10.1212/01.wnl.0000249142.82285.d6CrossrefGoogle Scholar

  • [35] Kaufmann P., Muntoni F., Issues in SMA clinical trial design. The International Coordinating Committee (ICC) for SMA Subcommittee on SMA Clinical Trial Design, Neuromuscul Disord, 2007, 17, 499–505 http://dx.doi.org/10.1016/j.nmd.2006.12.001CrossrefGoogle Scholar

  • [36] www.clinicaltrials.gov Google Scholar

  • [37] Grzeschik S. M., Ganta M., Prior T. W., Heavlin W. D., Wang C. H., Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells, Ann Neurol, 2005, 58, 194–202 http://dx.doi.org/10.1002/ana.20548CrossrefGoogle Scholar

  • [38] Liang W. C., Yuo C. Y., Chang J. G., Chen Y. C., Chang Y. F., Wang H. Y., et al., The effect of hydroxyurea in spinal muscular atrophy cells and patients, J Neurol Sci, 2008, 268, 87–94 http://dx.doi.org/10.1016/j.jns.2007.11.012CrossrefGoogle Scholar

  • [39] Chang J.G., Tsai F.J., Wang W.Y., Jong Y.J., Treatment of spinal muscular atrophy by hydroxyurea, American Journal of Human Genetics, 2002, 7,issue 4:2402 suppl. Google Scholar

  • [40] Terbach N., Williams R. S., Structure-function studies for the panacea, valproic acid, Biochem Soc Trans, 2009, 37, 1126–1132 http://dx.doi.org/10.1042/BST0371126CrossrefGoogle Scholar

  • [41] Brichta L., Hofmann Y., Hahnen E., Siebzehnrubl F. A., Raschke H., Blumcke I., et al., Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy, Hum Mol Genet, 2003, 12, 2481–2489 http://dx.doi.org/10.1093/hmg/ddg256CrossrefGoogle Scholar

  • [42] Sumner C. J., Huynh T. N., Markowitz J. A., Perhac J. S., Hill B., Coovert D. D., et al., Valproic acid increases SMN levels in spinal muscular atrophy patient cells, Ann Neurol, 2003, 54, 647–654 http://dx.doi.org/10.1002/ana.10743CrossrefGoogle Scholar

  • [43] Brichta L., Holker I., Haug K., Klockgether T., Wirth B., In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate, Ann Neurol, 2006, 59, 970–975 http://dx.doi.org/10.1002/ana.20836CrossrefGoogle Scholar

  • [44] Weihl C. C., Connolly A. M., Pestronk A., Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy, Neurology, 2006, 67, 500–501 http://dx.doi.org/10.1212/01.wnl.0000231139.26253.d0CrossrefGoogle Scholar

  • [45] Wirth B., Brichta L., Hahnen E., Spinal muscular atrophy and therapeutic prospects, Prog Mol Subcell Biol, 2006, 44, 109–132 http://dx.doi.org/10.1007/978-3-540-34449-0_6CrossrefGoogle Scholar

  • [46] Wirth B., Brichta L., Hahnen E., Spinal muscular atrophy: from gene to therapy, Semin Pediatr Neurol, 2006, 13, 121–131 http://dx.doi.org/10.1016/j.spen.2006.06.008CrossrefGoogle Scholar

  • [47] Piepers S., Cobben J. M., Sodaar P., Jansen M. D., Wadman R. I., Meester-Delver A., et al., Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: effects of treatment with valproic acid, J Neurol Neurosurg Psychiatry, 2010 Google Scholar

  • [48] Swoboda K. J., Kissel J. T., Crawford T. O., Bromberg M. B., Acsadi G., D’Anjou G., et al., Perspectives on clinical trials in spinal muscular atrophy, J Child Neurol, 2007, 22, 957–966 http://dx.doi.org/10.1177/0883073807305665CrossrefGoogle Scholar

  • [49] Swoboda K. J., Scott C. B., Reyna S. P., Prior T. W., LaSalle B., Sorenson S. L., et al., Phase II open label study of valproic acid in spinal muscular atrophy, PLoS One, 2009, 4, e5268 http://dx.doi.org/10.1371/journal.pone.0005268CrossrefGoogle Scholar

  • [50] Swoboda K. J., Scott C. B., Crawford T. O., Simard L. R., Reyna S. P., Krosschell K. J., et al., SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy, PLoS One, 2010, 5, e12140 http://dx.doi.org/10.1371/journal.pone.0012140CrossrefGoogle Scholar

  • [51] Cusco I., Barcelo M. J., Rojas-Garcia R., Illa I., Gamez J., Cervera C., et al., SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings, J Neurol, 2006, 253, 21–25 http://dx.doi.org/10.1007/s00415-005-0912-yCrossrefGoogle Scholar

  • [52] Hauke J., Riessland M., Lunke S., Eyupoglu I. Y., Blumcke I., El-Osta A., et al., Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition, Hum Mol Genet, 2009, 18, 304–317 http://dx.doi.org/10.1093/hmg/ddn357CrossrefGoogle Scholar

  • [53] Prior T. W., Krainer A. R., Hua Y., Swoboda K. J., Snyder P. C., Bridgeman S. J., et al., A positive modifier of spinal muscular atrophy in the SMN2 gene, Am J Hum Genet, 2009, 85, 408–413 http://dx.doi.org/10.1016/j.ajhg.2009.08.002CrossrefGoogle Scholar

  • [54] Avila A. M., Burnett B. G., Taye A. A., Gabanella F., Knight M. A., Hartenstein P., et al., Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy, J Clin Invest, 2007, 117, 659–671 http://dx.doi.org/10.1172/JCI29562CrossrefGoogle Scholar

  • [55] Hahnen E., Eyupoglu I. Y., Brichta L., Haastert K., Trankle C., Siebzehnrubl F. A., et al., In vitro and ex vivo evaluation of secondgeneration histone deacetylase inhibitors for the treatment of spinal muscular atrophy, J Neurochem, 2006, 98, 193–202 http://dx.doi.org/10.1111/j.1471-4159.2006.03868.xCrossrefGoogle Scholar

  • [56] Riessland M., Brichta L., Hahnen E., Wirth B., The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells, Hum Genet, 2006, 120, 101–110 http://dx.doi.org/10.1007/s00439-006-0186-1Google Scholar

  • [57] Riessland M., Ackermann B., Forster A., Jakubik M., Hauke J., Garbes L., et al., SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy, Hum Mol Genet, 2010, 19, 1492–1506 http://dx.doi.org/10.1093/hmg/ddq023CrossrefGoogle Scholar

  • [58] Garbes L., Riessland M., Holker I., Heller R., Hauke J., Trankle C., et al., LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate, Hum Mol Genet, 2009, 18, 3645–3658 http://dx.doi.org/10.1093/hmg/ddp313Google Scholar

  • [59] Dayangac-Erden D., Bora G., Ayhan P., Kocaefe C., Dalkara S., Yelekci K., et al., Histone deacetylase inhibition activity and molecular docking of (e)-resveratrol: its therapeutic potential in spinal muscular atrophy, Chem Biol Drug Des, 2009, 73, 355–364 http://dx.doi.org/10.1111/j.1747-0285.2009.00781.xCrossrefGoogle Scholar

  • [60] Yuo C. Y., Lin H. H., Chang Y. S., Yang W. K., Chang J. G., 5-(N-ethyl-Nisopropyl)-amiloride enhances SMN2 exon 7 inclusion and protein expression in spinal muscular atrophy cells, Ann Neurol, 2008, 63, 26–34 http://dx.doi.org/10.1002/ana.21241CrossrefGoogle Scholar

  • [61] Cartegni L., Krainer A. R., Correction of disease-associated exon skipping by synthetic exon-specific activators, Nat Struct Biol, 2003, 10, 120–125 http://dx.doi.org/10.1038/nsb887CrossrefGoogle Scholar

  • [62] Lorson C. L., Androphy E. J., An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN, Hum Mol Genet, 2000, 9, 259–265 http://dx.doi.org/10.1093/hmg/9.2.259CrossrefGoogle Scholar

  • [63] Zhang M. L., Lorson C. L., Androphy E. J., Zhou J., An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA, Gene Ther, 2001, 8, 1532–1538 http://dx.doi.org/10.1038/sj.gt.3301550CrossrefGoogle Scholar

  • [64] Andreassi C., Jarecki J., Zhou J., Coovert D. D., Monani U. R., Chen X., et al., Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients, Hum Mol Genet, 2001, 10, 2841–2849 http://dx.doi.org/10.1093/hmg/10.24.2841CrossrefGoogle Scholar

  • [65] Ramassamy C., Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets, Eur J Pharmacol, 2006, 545, 51–64 http://dx.doi.org/10.1016/j.ejphar.2006.06.025CrossrefGoogle Scholar

  • [66] Sakla M. S., Lorson C. L., Induction of full-length survival motor neuron by polyphenol botanical compounds, Hum Genet, 2008, 122, 635–643 http://dx.doi.org/10.1007/s00439-007-0441-0CrossrefGoogle Scholar

  • [67] Skommer J., Wlodkowic D., Pelkonen J., Gene-expression profiling during curcumin-induced apoptosis reveals downregulation of CXCR4, Exp Hematol, 2007, 35, 84–95 http://dx.doi.org/10.1016/j.exphem.2006.09.006CrossrefGoogle Scholar

  • [68] Grondard C., Biondi O., Armand A. S., Lecolle S., Della Gaspera B., Pariset C., et al., Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse, J Neurosci, 2005, 25, 7615–7622 http://dx.doi.org/10.1523/JNEUROSCI.1245-05.2005CrossrefGoogle Scholar

  • [69] Biondi O., Grondard C., Lecolle S., Deforges S., Pariset C., Lopes P., et al., Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2 spinal muscular atrophy model mouse, J Neurosci, 2008, 28, 953–962 http://dx.doi.org/10.1523/JNEUROSCI.3237-07.2008CrossrefGoogle Scholar

  • [70] Biondi O., Branchu J., Sanchez G., Lancelin C., Deforges S., Lopes P., et al., In vivo NMDA receptor activation accelerates motor unit maturation, protects spinal motor neurons, and enhances SMN2 gene expression in severe spinal muscular atrophy mice, J Neurosci, 2010, 30, 11288–11299 http://dx.doi.org/10.1523/JNEUROSCI.1764-10.2010CrossrefGoogle Scholar

  • [71] Majumder S., Varadharaj S., Ghoshal K., Monani U., Burghes A. H., Jacob S. T., Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene, J Biol Chem, 2004, 279, 14803–14811 http://dx.doi.org/10.1074/jbc.M308225200CrossrefGoogle Scholar

  • [72] Skordis L. A., Dunckley M. G., Yue B., Eperon I. C., Muntoni F., Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts, Proc Natl Acad Sci U S A, 2003, 100, 4114–4119 http://dx.doi.org/10.1073/pnas.0633863100CrossrefGoogle Scholar

  • [73] Singh N. K., Singh N. N., Androphy E. J., Singh R. N., Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron, Mol Cell Biol, 2006, 26, 1333–1346 http://dx.doi.org/10.1128/MCB.26.4.1333-1346.2006CrossrefGoogle Scholar

  • [74] Williams J. H., Schray R. C., Patterson C. A., Ayitey S. O., Tallent M. K., Lutz G. J., Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy, J Neurosci, 2009, 29, 7633–7638 http://dx.doi.org/10.1523/JNEUROSCI.0950-09.2009CrossrefGoogle Scholar

  • [75] Hua Y., Sahashi K., Hung G., Rigo F., Passini M. A., Bennett C. F., et al., Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model, Genes Dev, 2010, 24, 1634–1644 http://dx.doi.org/10.1101/gad.1941310CrossrefGoogle Scholar

  • [76] Baughan T. D., Dickson A., Osman E. Y., Lorson C. L., Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 1600–1611 http://dx.doi.org/10.1093/hmg/ddp076CrossrefGoogle Scholar

  • [77] Coady T. H., Lorson C. L., Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy, J Neurosci, 2010, 30, 126–130 http://dx.doi.org/10.1523/JNEUROSCI.4489-09.2010CrossrefGoogle Scholar

  • [78] Hastings M. L., Berniac J., Liu Y. H., Abato P., Jodelka F. M., Barthel L., et al., Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy, Sci Transl Med, 2009, 1, 5ra12 Google Scholar

  • [79] Wolstencroft E. C., Mattis V., Bajer A. A., Young P. J., Lorson C. L., A nonsequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels, Hum Mol Genet, 2005, 14, 1199–1210 http://dx.doi.org/10.1093/hmg/ddi131CrossrefGoogle Scholar

  • [80] Mattis V. B., Rai R., Wang J., Chang C. W., Coady T., Lorson C. L., Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts, Hum Genet, 2006, 120, 589–601 http://dx.doi.org/10.1007/s00439-006-0245-7CrossrefGoogle Scholar

  • [81] Mattis V. B., Ebert A. D., Fosso M. Y., Chang C. W., Lorson C. L., Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model, Hum Mol Genet, 2009, 18, 3906–3913 http://dx.doi.org/10.1093/hmg/ddp333CrossrefGoogle Scholar

  • [82] Mattis V. B., Ebert A. D., Fosso M. Y., Chang C. W., Lorson C. L., Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model, Hum Mol Genet, 2009, 18, 3906–3913 http://dx.doi.org/10.1093/hmg/ddp333CrossrefGoogle Scholar

  • [83] Heier C. R., DiDonato C. J., Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo, Hum Mol Genet, 2009, 18, 1310–1322 http://dx.doi.org/10.1093/hmg/ddp030CrossrefGoogle Scholar

  • [84] Butchbach M. E., Singh J., Thorsteinsdottir M., Saieva L., Slominski E., Thurmond J., et al., Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy, Hum Mol Genet, 2010, 19, 454–467 http://dx.doi.org/10.1093/hmg/ddp510CrossrefGoogle Scholar

  • [85] Lunn M. R., Root D. E., Martino A. M., Flaherty S. P., Kelley B. P., Coovert D. D., et al., Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism, Chem Biol, 2004, 11, 1489–1493 http://dx.doi.org/10.1016/j.chembiol.2004.08.024CrossrefGoogle Scholar

  • [86] Burnett B. G., Munoz E., Tandon A., Kwon D. Y., Sumner C. J., Fischbeck K. H., Regulation of SMN protein stability, Mol Cell Biol, 2009, 29, 1107–1115 http://dx.doi.org/10.1128/MCB.01262-08CrossrefGoogle Scholar

  • [87] Chang H. C., Hung W. C., Chuang Y. J., Jong Y. J., Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway, Neurochem Int, 2004, 45, 1107–1112 http://dx.doi.org/10.1016/j.neuint.2004.04.005CrossrefGoogle Scholar

  • [88] Thoenen H., Hughes R. A., Sendtner M., Trophic support of motoneurons: physiological, pathophysiological, and therapeutic implications, Exp Neurol, 1993, 124, 47–55 http://dx.doi.org/10.1006/exnr.1993.1173CrossrefGoogle Scholar

  • [89] Bryson H. M., Fulton B., Benfield P., Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis, Drugs, 1996, 52, 549–563 http://dx.doi.org/10.2165/00003495-199652040-00010CrossrefGoogle Scholar

  • [90] Merlini L., Solari A., Vita G., Bertini E., Minetti C., Mongini T., et al., Role of gabapentin in spinal muscular atrophy: results of a multicenter, randomized Italian study, J Child Neurol, 2003, 18, 537–541 http://dx.doi.org/10.1177/08830738030180080501CrossrefGoogle Scholar

  • [91] Haddad H., Cifuentes-Diaz C., Miroglio A., Roblot N., Joshi V., Melki J., Riluzole attenuates spinal muscular atrophy disease progression in a mouse model, Muscle Nerve, 2003, 28, 432–437 http://dx.doi.org/10.1002/mus.10455CrossrefGoogle Scholar

  • [92] Russman B. S., Iannaccone S. T., Samaha F. J., A phase 1 trial of riluzole in spinal muscular atrophy, Arch Neurol, 2003, 60, 1601–1603 http://dx.doi.org/10.1001/archneur.60.11.1601CrossrefGoogle Scholar

  • [93] Bach J. R., The use of mechanical ventilation is appropriate in children with genetically proven spinal muscular atrophy type 1: the motion for, Paediatr Respir Rev, 2008, 9, 45–50; quiz 50; discussion 55–46 http://dx.doi.org/10.1016/j.prrv.2007.11.003CrossrefGoogle Scholar

  • [94] Bosboom W. M., Vrancken A. F., van den Berg L. H., Wokke J. H., Iannaccone S. T., Drug treatment for spinal muscular atrophy type I, Cochrane Database Syst Rev, 2009, CD006281 Google Scholar

  • [95] Ryan M. M., The use of invasive ventilation is appropriate in children with genetically proven spinal muscular atrophy type 1: the motion against, Paediatr Respir Rev, 2008, 9, 51–54; discussion 55–56 http://dx.doi.org/10.1016/j.prrv.2007.10.002CrossrefGoogle Scholar

  • [96] Bessman S. P., Geiger P. J., Transport of energy in muscle: the phosphorylcreatine shuttle, Science, 1981, 211, 448–452 http://dx.doi.org/10.1126/science.6450446CrossrefGoogle Scholar

  • [97] Ellis A. C., Rosenfeld J., The role of creatine in the management of amyotrophic lateral sclerosis and other neurodegenerative disorders, CNS Drugs, 2004, 18, 967–980 http://dx.doi.org/10.2165/00023210-200418140-00002CrossrefGoogle Scholar

  • [98] Tarnopolsky M., Martin J., Creatine monohydrate increases strength in patients with neuromuscular disease, Neurology, 1999, 52, 854–857 CrossrefGoogle Scholar

  • [99] Wong B., Hynan L.S., Iannaccone S.T., AmSMART Group, A randomized, placebo-controlled trial of creatine in children with spinal muscular atrophy, J Clin Neuromuscul Dis, 2007, 8, 101–110 http://dx.doi.org/10.1097/CND.0b013e3180315c99CrossrefGoogle Scholar

  • [100] Greensmith L., Vrbova G., Possible strategies for treatment of SMA patients: a neurobiologist’s view, Neuromuscul Disord, 1995, 5, 359–369 http://dx.doi.org/10.1016/0960-8966(94)00090-VCrossrefGoogle Scholar

  • [101] Taylor J. E., Thomas N. H., Lewis C. M., Abbs S. J., Rodrigues N. R., Davies K. E., et al., Correlation of SMNt and SMNc gene copy number with age of onset and survival in spinal muscular atrophy, Eur J Hum Genet, 1998, 6, 467–474 http://dx.doi.org/10.1038/sj.ejhg.5200210CrossrefGoogle Scholar

  • [102] Miller R. G., Moore D. H., Dronsky V., Bradley W., Barohn R., Bryan W., et al., A placebo-controlled trial of gabapentin in spinal muscular atrophy, J Neurol Sci, 2001, 191, 127–131 http://dx.doi.org/10.1016/S0022-510X(01)00632-3CrossrefGoogle Scholar

  • [103] Bresolin N., Freddo L., Tegazzin V., Bet L., Armani M., Angelini C., Carnitine and acyltransferase in experimental neurogenic atrophies: changes with treatment, J Neurol, 1984, 231, 170–175 http://dx.doi.org/10.1007/BF00313933CrossrefGoogle Scholar

  • [104] Bigini P., Larini S., Pasquali C., Muzio V., Mennini T., Acetyl-L-carnitine shows neuroprotective and neurotrophic activity in primary culture of rat embryo motoneurons, Neurosci Lett, 2002, 329, 334–338 http://dx.doi.org/10.1016/S0304-3940(02)00667-5CrossrefGoogle Scholar

  • [105] Oppenheim R. W., Wiese S., Prevette D., Armanini M., Wang S., Houenou L. J., et al., Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons, J Neurosci, 2001, 21, 1283–1291 Google Scholar

  • [106] Lesbordes J. C., Cifuentes-Diaz C., Miroglio A., Joshi V., Bordet T., Kahn A., et al., Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy, Hum Mol Genet, 2003, 12, 1233–1239 http://dx.doi.org/10.1093/hmg/ddg143CrossrefGoogle Scholar

  • [107] Takeuchi Y., Miyanomae Y., Komatsu H., Oomizono Y., Nishimura A., Okano S., et al., Efficacy of thyrotropin-releasing hormone in the treatment of spinal muscular atrophy, J Child Neurol, 1994, 9, 287–289 http://dx.doi.org/10.1177/088307389400900313CrossrefGoogle Scholar

  • [108] Tzeng A. C., Cheng J., Fryczynski H., Niranjan V., Stitik T., Sial A., et al., A study of thyrotropin-releasing hormone for the treatment of spinal muscular atrophy: a preliminary report, Am J Phys Med Rehabil, 2000, 79, 435–440 http://dx.doi.org/10.1097/00002060-200009000-00005CrossrefGoogle Scholar

  • [109] Bosboom W. M., Vrancken A. F., van den Berg L. H., Wokke J. H., Iannaccone S. T., Drug treatment for spinal muscular atrophy types II and III, Cochrane Database Syst Rev, 2009, CD006282 Google Scholar

  • [110] Kato Z., Okuda M., Okumura Y., Arai T., Teramoto T., Nishimura M., et al., Oral administration of the thyrotropin-releasing hormone (TRH) analogue, taltireline hydrate, in spinal muscular atrophy, J Child Neurol, 2009, 24, 1010–1012 http://dx.doi.org/10.1177/0883073809333535CrossrefGoogle Scholar

  • [111] Caruso J. F., Signorile J. F., Perry A. C., Leblanc B., Williams R., Clark M., et al., The effects of albuterol and isokinetic exercise on the quadriceps muscle group, Med Sci Sports Exerc, 1995, 27, 1471–1476 Google Scholar

  • [112] Kindermann W., Do inhaled beta(2)-agonists have an ergogenic potential in non-asthmatic competitive athletes?, Sports Med, 2007, 37, 95–102 http://dx.doi.org/10.2165/00007256-200737020-00001CrossrefGoogle Scholar

  • [113] Martineau L., Horan M. A., Rothwell N. J., Little R. A., Salbutamol, a beta 2-adrenoceptor agonist, increases skeletal muscle strength in young men, Clin Sci (Lond), 1992, 83, 615–621 Google Scholar

  • [114] Angelozzi C., Borgo F., Tiziano F. D., Martella A., Neri G., Brahe C., Salbutamol increases SMN mRNA and protein levels in spinal muscular atrophy cells, J Med Genet, 2008, 45, 29–31 http://dx.doi.org/10.1136/jmg.2007.051177CrossrefGoogle Scholar

  • [115] Kinali M., Mercuri E., Main M., De Biasia F., Karatza A., Higgins R., et al., Pilot trial of albuterol in spinal muscular atrophy, Neurology, 2002, 59, 609–610 CrossrefGoogle Scholar

  • [116] Pane M., Staccioli S., Messina S., D’Amico A., Pelliccioni M., Mazzone E. S., et al., Daily salbutamol in young patients with SMA type II, Neuromuscul Disord, 2008, 18, 536–540 http://dx.doi.org/10.1016/j.nmd.2008.05.004CrossrefGoogle Scholar

  • [117] Tiziano F. D., Lomastro R., Pinto A. M., Messina S., D’Amico A., Fiori S., et al., Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design, J Med Genet, 2010, 47, 856–858 http://dx.doi.org/10.1136/jmg.2010.080366CrossrefGoogle Scholar

  • [118] Franz D.N., Tudor C.A., Samaha F.J., A phase I trial of recombinant human ciliary neurotrophic factor in spinal muscular atrophy, Ann Neurol, 1995, 38, 546 Google Scholar

  • [119] Lee S. J., Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways, PLoS One, 2007, 2, e789 http://dx.doi.org/10.1371/journal.pone.0000789CrossrefGoogle Scholar

  • [120] Rose F. F., Jr., Mattis V. B., Rindt H., Lorson C. L., Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 997–1005 http://dx.doi.org/10.1093/hmg/ddn426CrossrefGoogle Scholar

  • [121] Sumner C. J., Wee C. D., Warsing L. C., Choe D. W., Ng A. S., Lutz C., et al., Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice, Hum Mol Genet, 2009, 18, 3145–3152 http://dx.doi.org/10.1093/hmg/ddp253CrossrefGoogle Scholar

  • [122] Stavarachi M., Apostol P., Toma M., Cimponeriu D., Gavrila L., Spinal muscular atrophy disease: a literature review for therapeutic strategies, J Med Life, 2010, 3, 3–9 Google Scholar

  • [123] Gao J., Coggeshall R. E., Chung J. M., Wang J., Wu P., Functional motoneurons develop from human neural stem cell transplants in adult rats, Neuroreport, 2007, 18, 565–569 http://dx.doi.org/10.1097/WNR.0b013e3280b10c2cCrossrefGoogle Scholar

  • [124] Wichterle H., Lieberam I., Porter J. A., Jessell T. M., Directed differentiation of embryonic stem cells into motor neurons, Cell, 2002, 110, 385–397 http://dx.doi.org/10.1016/S0092-8674(02)00835-8CrossrefGoogle Scholar

  • [125] Deshpande D. M., Kim Y. S., Martinez T., Carmen J., Dike S., Shats I., et al., Recovery from paralysis in adult rats using embryonic stem cells, Ann Neurol, 2006, 60, 32–44 http://dx.doi.org/10.1002/ana.20901CrossrefGoogle Scholar

  • [126] Harper J. M., Krishnan C., Darman J. S., Deshpande D. M., Peck S., Shats I., et al., Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats, Proc Natl Acad Sci U S A, 2004, 101, 7123–7128 http://dx.doi.org/10.1073/pnas.0401103101CrossrefGoogle Scholar

  • [127] Corti S., Nizzardo M., Nardini M., Donadoni C., Salani S., Ronchi D., et al., Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy, J Clin Invest, 2008, 118, 3316–3330 http://dx.doi.org/10.1172/JCI35432CrossrefGoogle Scholar

  • [128] Flax J. D., Aurora S., Yang C., Simonin C., Wills A. M., Billinghurst L. L., et al., Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes, Nat Biotechnol, 1998, 16, 1033–1039 http://dx.doi.org/10.1038/3473CrossrefGoogle Scholar

  • [129] Lee J. P., Jeyakumar M., Gonzalez R., Takahashi H., Lee P. J., Baek R. C., et al., Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease, Nat Med, 2007, 13, 439–447 http://dx.doi.org/10.1038/nm1548CrossrefGoogle Scholar

  • [130] Park K. I., Teng Y. D., Snyder E. Y., The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue, Nat Biotechnol, 2002, 20, 1111–1117 http://dx.doi.org/10.1038/nbt751CrossrefGoogle Scholar

  • [131] Nayak M. S., Kim Y. S., Goldman M., Keirstead H. S., Kerr D. A., Cellular therapies in motor neuron diseases, Biochim Biophys Acta, 2006, 1762, 1128–1138 CrossrefGoogle Scholar

  • [132] Corti S., Nizzardo M., Nardini M., Donadoni C., Salani S., Ronchi D., et al., Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice, Brain, 2010, 133, 465–481 http://dx.doi.org/10.1093/brain/awp318CrossrefGoogle Scholar

  • [133] Azzouz M., Le T., Ralph G. S., Walmsley L., Monani U. R., Lee D. C., et al., Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy, J Clin Invest, 2004, 114, 1726–1731 CrossrefGoogle Scholar

  • [134] Baughan T., Shababi M., Coady T. H., Dickson A. M., Tullis G. E., Lorson C. L., Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector, Mol Ther, 2006, 14, 54–62 http://dx.doi.org/10.1016/j.ymthe.2006.01.012CrossrefGoogle Scholar

  • [135] Baughan T. D., Dickson A., Osman E. Y., Lorson C. L., Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 1600–1611 http://dx.doi.org/10.1093/hmg/ddp076CrossrefGoogle Scholar

  • [136] Madocsai C., Lim S. R., Geib T., Lam B. J., Hertel K. J., Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs, Mol Ther, 2005, 12, 1013–1022 http://dx.doi.org/10.1016/j.ymthe.2005.08.022CrossrefGoogle Scholar

  • [137] Geib T., Hertel K. J., Restoration of full-length SMN promoted by adenoviral vectors expressing RNA antisense oligonucleotides embedded in U7 snRNAs, PLoS One, 2009, 4, e8204 http://dx.doi.org/10.1371/journal.pone.0008204CrossrefGoogle Scholar

  • [138] Meyer K., Marquis J., Trub J., Nlend Nlend R., Verp S., Ruepp M. D., et al., Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation, Hum Mol Genet, 2009, 18, 546–555 http://dx.doi.org/10.1093/hmg/ddn382CrossrefGoogle Scholar

  • [139] Valori C. F., Ning K., Wyles M., Mead R. J., Grierson A. J., Shaw P. J., et al., Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy, Sci Transl Med, 2010, 2, 35ra42 Google Scholar

  • [140] Bevan A. K., Hutchinson K. R., Foust K. D., Braun L., McGovern V. L., Schmelzer L., et al., Early heart failure in the SMNΔ7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery, Hum Mol Genet, 2010, 19, 3895–3905 http://dx.doi.org/10.1093/hmg/ddq300CrossrefGoogle Scholar

  • [141] Passini M. A., Bu J., Roskelley E. M., Richards A. M., Sardi S. P., O’Riordan C. R., et al., CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy, J Clin Invest, 2010, 120, 1253–1264 http://dx.doi.org/10.1172/JCI41615CrossrefGoogle Scholar

  • [142] Foust K. D., Wang X., McGovern V. L., Braun L., Bevan A. K., Haidet A. M., et al., Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN, Nat Biotechnol, 2010, 28, 271–274 http://dx.doi.org/10.1038/nbt.1610CrossrefGoogle Scholar

  • [143] Liu X., Jiang Q., Mansfield S. G., Puttaraju M., Zhang Y., Zhou W., et al., Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA transsplicing, Nat Biotechnol, 2002, 20, 47–52 Google Scholar

  • [144] Rodriguez-Martin T., Garcia-Blanco M. A., Mansfield S. G., Grover A. C., Hutton M., Yu Q., et al., Reprogramming of tau alternative splicing by spliceosome-mediated RNA trans-splicing: implications for tauopathies, Proc Natl Acad Sci U S A, 2005, 102, 15659–15664 http://dx.doi.org/10.1073/pnas.0503150102CrossrefGoogle Scholar

  • [145] Coady T. H., Shababi M., Tullis G. E., Lorson C. L., Restoration of SMN function: delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing, Mol Ther, 2007, 15, 1471–1478 http://dx.doi.org/10.1038/sj.mt.6300222CrossrefGoogle Scholar

  • [146] Ning K., Drepper C., Valori C. F., Ahsan M., Wyles M., Higginbottom A., et al., PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons, Hum Mol Genet, 2010, 19, 3159–3168 http://dx.doi.org/10.1093/hmg/ddq226CrossrefGoogle Scholar

  • [147] Kirkinezos I. G., Hernandez D., Bradley W. G., Moraes C. T., Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis, Ann Neurol, 2003, 53, 804–807 http://dx.doi.org/10.1002/ana.10597CrossrefGoogle Scholar

  • [148] Mahoney D. J., Rodriguez C., Devries M., Yasuda N., Tarnopolsky M. A., Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis, Muscle Nerve, 2004, 29, 656–662 http://dx.doi.org/10.1002/mus.20004CrossrefGoogle Scholar

  • [149] Hsieh-Li H. M., Chang J. G., Jong Y. J., Wu M. H., Wang N. M., Tsai C. H., et al., A mouse model for spinal muscular atrophy, Nat Genet, 2000, 24, 66–70 http://dx.doi.org/10.1038/71709CrossrefGoogle Scholar

  • [150] Butchbach M. E., Rose F. F., Jr., Rhoades S., Marston J., McCrone J. T., Sinnott R., et al., Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy, Biochem Biophys Res Commun, 2010, 391, 835–840 http://dx.doi.org/10.1016/j.bbrc.2009.11.148CrossrefGoogle Scholar

  • [151] Bertini E., Burghes A., Bushby K., Estournet-Mathiaud B., Finkel R. S., Hughes R. A., et al., 134th ENMC International Workshop: Outcome Measures and Treatment of Spinal Muscular Atrophy, 11–13 February 2005, Naarden, The Netherlands, Neuromuscul Disord, 2005, 15, 802–816 http://dx.doi.org/10.1016/j.nmd.2005.07.005CrossrefGoogle Scholar

  • [152] Hirtz D., Iannaccone S., Heemskerk J., Gwinn-Hardy K., Moxley R., 3rd, Rowland L. P., Challenges and opportunities in clinical trials for spinal muscular atrophy, Neurology, 2005, 65, 1352–1357 http://dx.doi.org/10.1212/01.wnl.0000183282.10946.c7CrossrefGoogle Scholar

  • [153] Iannaccone S. T., Hynan L. S., Reliability of 4 outcome measures in pediatric spinal muscular atrophy, Arch Neurol, 2003, 60, 1130–1136 http://dx.doi.org/10.1001/archneur.60.8.1130CrossrefGoogle Scholar

  • [154] Main M., Kairon H., Mercuri E., Muntoni F., The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation, Eur J Paediatr Neurol, 2003, 7, 155–159 http://dx.doi.org/10.1016/S1090-3798(03)00060-6CrossrefGoogle Scholar

  • [155] Mercuri E., Messina S., Battini R., Berardinelli A., Boffi P., Bono R., et al., Reliability of the Hammersmith functional motor scale for spinal muscular atrophy in a multicentric study, Neuromuscul Disord, 2006, 16, 93–98 http://dx.doi.org/10.1016/j.nmd.2005.11.010CrossrefGoogle Scholar

  • [156] Merlini L., Bertini E., Minetti C., Mongini T., Morandi L., Angelini C., et al., Motor function-muscle strength relationship in spinal muscular atrophy, Muscle Nerve, 2004, 29, 548–552 http://dx.doi.org/10.1002/mus.20018CrossrefGoogle Scholar

  • [157] De Gruttola V. G., Clax P., DeMets D. L., Downing G. J., Ellenberg S. S., Friedman L., et al., Considerations in the evaluation of surrogate endpoints in clinical trials. summary of a National Institutes of Health workshop, Control Clin Trials, 2001, 22, 485–502 http://dx.doi.org/10.1016/S0197-2456(01)00153-2CrossrefGoogle Scholar

  • [158] Lesko L. J., Atkinson A. J., Jr., Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies, Annu Rev Pharmacol Toxicol, 2001, 41, 347–366 http://dx.doi.org/10.1146/annurev.pharmtox.41.1.347CrossrefGoogle Scholar

  • [159] Sproule D.M., Kaufmann P., Therapeutic developments in spinal muscular atrophy, Ther Adv Neurol Disorders, 2010, 3, 173–185 http://dx.doi.org/10.1177/1756285610369026CrossrefGoogle Scholar

About the article

Published Online: 2010-12-31

Published in Print: 2010-12-01


Citation Information: Translational Neuroscience, Volume 1, Issue 4, Pages 308–321, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/v10134-010-0045-4.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Andrew P. Tosolini and James N. Sleigh
Frontiers in Molecular Neuroscience, 2017, Volume 10
[2]
Heidi R Fuller, Emma L Humphrey, and Glenn E Morris
Future Medicinal Chemistry, 2013, Volume 5, Number 17, Page 2091
[3]
Emma Humphrey, Heidi R. Fuller, and Glenn E. Morris
Neuromuscular Disorders, 2012, Volume 22, Number 2, Page 193

Comments (0)

Please log in or register to comment.
Log in