Jump to ContentJump to Main Navigation
Show Summary Details

Translational Neuroscience

Editor-in-Chief: Šimic, Goran

1 Issue per year


IMPACT FACTOR 2015: 1.012

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286
Impact per Publication (IPP) 2015: 1.155

Open Access
Online
ISSN
2081-6936
See all formats and pricing

Early brain injury and plasticity: Reorganization and functional Recovery

Ana Katušić
  • Center for rehabilitation, “Mali dom-Zagreb”, Zagreb, 10000, Croatia
  • Email:
Published Online: 2011-03-26 | DOI: https://doi.org/10.2478/s13380-011-0006-5

Abstract

One of the most remarkable observations in developmental neuroscience is the plasticity of the developing brain. Although recent findings suggest that the developing brain possesses substantial compensatory potential, the mechanisms of reorganization and its limitations remain largely unknown. This review includes studies elucidating the complexities of brain reorganization in response to early brain injury. It describes the factors influencing the pattern and degree of brain plasticity, provides insight into the patterns of reorganization in different brain systems and offers guidelines for clinicians in the field of neurorehabilitation. This knowledge is crucial in clinical work when designing the appropriate type and timing of interventions for children with early brain injuries

Keywords: Early Brain Injury; Plasticity; Reorganization; Functional Outcome; Rehabilitation; Timely Appropriate Interventions

  • [1] Condic M. L., Regeneration and Repair, In Rao M.H., Jacobson M. (Eds.), Developmental Neurobilogy, 4th ed., Kluwer Academic Publishers, New York 2005.

  • [2] Johnston M. V., Clinical disorders of brain plasticity, Brain. Dev., 2004, 26(2), 73–80 http://dx.doi.org/10.1016/S0387-7604(03)00102-5 [Crossref]

  • [3] Johnston M. V., Nishimura A., Harum K., Pekar J., Blue M.E., Sculpting the developing brain, Adv. Pediatr., 2001, 48, 1–38

  • [4] Rakić P., Radial unit hypothesis of neocortical expansion, Novartis Found. Symp., 2000, 228, 30–42

  • [5] Johnston M. V., Plasticity in the developing brain: Implications for rehabilitation, Dev. Disabil. Res. Rev., 2009, 15, 94–101 http://dx.doi.org/10.1002/ddrr.64 [Crossref]

  • [6] Huttenlocher P. R., Dabholkar A.S., Regional differences in synaptogenesis in human cerebral cortex, J. Comp. Neurol., 1997, 387, 167–178 http://dx.doi.org/10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z [Crossref]

  • [7] Kartje G. L., Schwab M., Axonal Growth in the Adult Mammalian Nervous System: Regeneration and Compensatory Plasticity. In: Siegel G.M.D., Albers W.R., Scott B, Price D. (Eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 7th ed., American Society for Neurochemistry, Elsevier, 2006

  • [8] Duffau H., New insights into functional mapping in cerebral tumor surgery: study of the dynamic interactions between the lesion and the brain, 1st ed., Nova Science Publishers, New York, 2008

  • [9] Aram D., Enkleman B., Cognitive profiles of children with early onset unilateral lesions, Dev. Neuropsychol., 1986, 2, 155–172 http://dx.doi.org/10.1080/87565648609540339 [Crossref]

  • [10] Dennis M., Capacity and strategy for syntactic comprehension after left or right hemidecortication, Brain Lang., 1980, 10, 287–317 http://dx.doi.org/10.1016/0093-934X(80)90058-9 [Crossref]

  • [11] Kennard M., Age and other factors in motor recovery from precentral lesions in monkeys, Am. J. Physiol., 1936, 115, 138–146

  • [12] Kennard M., Relation of age to motor impairment in man and in subhuman primates, Arch. Neurol. Psychiatry, 1940, 44, 377–397 [Crossref]

  • [13] Giza C., Prins M., Is being plastic really fantastic? Mechanisms of altered plasticity after developmental traumatic brain injury, Dev. Neurosci., 2006, 28, 364–379 http://dx.doi.org/10.1159/000094163 [Crossref]

  • [14] Hebb D., The effects of early and late injury upon test scores, and the nature of normal adult intelligence, Proc. Am. Phil. Soc., 1942, 85, 275–292

  • [15] Hebb D., The organisation of behaviour. Psychology Press, New edition ed., East Sussex, 2002

  • [16] Kolb B., Pellis S., Robinson T., Plasticity and functions of the orbitalfrontal cortex, Brain. Cogn., 2004, 55, 104–115 http://dx.doi.org/10.1016/S0278-2626(03)00278-1 [Crossref]

  • [17] Vargha-Khadem F., Isaacs E., Papaleloudi H., Polkey C., Wilson J., Development of intelligence and memory in children with hemiplegic cerebral palsy, Brain, 1992, 115, 315–329 http://dx.doi.org/10.1093/brain/115.1.315 [Crossref]

  • [18] Meeks J., Jennekens-Schnikel A., van Schooneveld M.M.J., Recovery after childhood traumatic brain injury: Vulnerability and plasticity, Pediatric., 2006, 117: 2330 http://dx.doi.org/10.1542/peds.2006-0083 [Crossref]

  • [19] Chapman S. B, McKinnon L., Discussion of developmenal plasticity: Factors affecting cognitive outcome after pediatric traumatic brain injury, J. Commun. Disord., 2000, 33, 333–344 http://dx.doi.org/10.1016/S0021-9924(00)00029-0 [Crossref]

  • [20] Chugani H. T., Muller R.A., Chugani D.C., Functional brain reorganization in children, Brain Dev., 1996, 18, 347–356 http://dx.doi.org/10.1016/0387-7604(96)00032-0 [Crossref]

  • [21] Dennis M., Language and the young damaged brain. In: Boll T., Bryant B. (Eds), Clinical neuropsychology and brain function: Research, measurement and practice, 1st ed., American Psychological Association, Washington 1989

  • [22] Johnson M., Sensitive periods in functional brain development: Problems and prospects, Dev. Psychobiol., 2005, 46, 287–292 http://dx.doi.org/10.1002/dev.20057 [Crossref]

  • [23] Thomas M.S.C., Johnson M.H., New advances in understanding sensitive periods in brain development. Curr. Direct. in Psychology. Sci., 2008, 17, 1–5 http://dx.doi.org/10.1111/j.1467-8721.2008.00537.x [Crossref]

  • [24] Chapman S. B., Culhane K.A., Levin H.S., Harward H., Mendelsohn D., Ewing-Cobbs L., et al., Narrative discourse after closed head injury in children and adolescents, Brain Lang., 1992, 43, 42–65 http://dx.doi.org/10.1016/0093-934X(92)90020-F [Crossref]

  • [25] Chapman S. B., Levin H.S., Matejka J., Harward H., Kufera J.A., Discourse ability in children with brain injury: Consideration of linguistic, psychosocial, and cognitive factors, J Head Trauma Rehab., 1995, 10, 36–54 http://dx.doi.org/10.1097/00001199-199510000-00006 [Crossref]

  • [26] Chapman S. B., Levin H., Wanek A., Weyrauch J., Kufera J., Discourse after closed head injury in young children: Relation of age to outcome. Brain Lang., 1998, 61, 420–449 http://dx.doi.org/10.1006/brln.1997.1885 [Crossref]

  • [27] Levin H. S., Culhane K.A., Mendelsohn D., Lilly M.A., Bruce D., Fletcher J.M., et al., Cognition in relation to magnetic resonance imaging in head-injured children and adolescents, Arch. of Neurol., 1993, 50, 897–905

  • [28] Chapman S.B., Discourse as an outcome measure in pediatric head injured patients. In: Broman S., Michel M.E., (Eds.), Consequences of Traumatic Head Injury in Children: Variability in Short and Long Term Outcomes, 1st ed., Oxford Press, New York 1995.

  • [29] Levin H. S., Song J., Ewing-Cobbs L., Chapman S.B., Mendelsohn D., Word fluency in relation to severity of closed head injury, associated frontal brain lesions, and age at injury in children. Neuropsychologia, 2001, 39(2), 122–131 http://dx.doi.org/10.1016/S0028-3932(00)00111-1 [Crossref]

  • [30] Gogtay N., Giedd J.N., Lusk L., Dynamic mapping of human cortical development during childhood throughearly adulthood. Proc. Natl. Acad. Sci. USA, 2004, 101, 8174–79 http://dx.doi.org/10.1073/pnas.0402680101 [Crossref]

  • [31] Kolb B., Gibb R., Brain plasticity and recovery from early cortical injury, Dev. Psychobiol., 2007, 49, 107–18 http://dx.doi.org/10.1002/dev.20199 [Crossref]

  • [32] Banich M. T., Levine S.C., Kim H., Huttenlocher P., The effects of developmental factors on IQ in hemiplegic children, Neuropsychologia, 1990, 28, 35–47 http://dx.doi.org/10.1016/0028-3932(90)90084-2 [Crossref]

  • [33] Anderson V., Spencer-Smith M., Coleman L., Anderson P., Williams J., Greenham M., et al., Children’s executive functions: Are they poorer after very early brain insult?, Neuropsychologia, 2010, 48, 2041–2050 http://dx.doi.org/10.1016/j.neuropsychologia.2010.03.025 [Crossref]

  • [34] Westmacott R., Askalan R., Macgregor D., Anderson P., Deveber G., Cognitive outcome following unilateral arterial ischaemic stroke in childhood: effects of age at stroke and lesion location, Dev. Med. Child Neurol., 2010, 52, 386–393 http://dx.doi.org/10.1111/j.1469-8749.2009.03403.x [Crossref]

  • [35] Holmström L., Vollmer B., Tedroff K., Islam M., Persson J.K., Kits A., et al., Hand function in relation to brain lesions and corticomotorprojection pattern in children with unilateral cerebral palsy, Dev. Med. Child Neurol., 2010, 52, 145–152 http://dx.doi.org/10.1111/j.1469-8749.2009.03496.x [Crossref]

  • [36] Riva D., Cazzaniga L., Late effects of unilateral brain lesions sustained before and after age one, Neuropsychologia, 1986, 24, 423–428 http://dx.doi.org/10.1016/0028-3932(86)90029-1 [Crossref]

  • [37] Goodman R., Yude C., IQ and its predictors in childhood hemiplegia, Dev. Med. Child Neurol., 1996, 38, 881–890 http://dx.doi.org/10.1111/j.1469-8749.1996.tb15045.x [Crossref]

  • [38] Pfefferbaum A., Mathalon D.H., Sullivan E.V., Rawles J.M., Zipursky R.B., Lim K.O., A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood, Arch. Neurol., 1994, 51, 874–887 [Crossref]

  • [39] Kostović I., Petanjek Z., Developmental reorganization of the human cerebral cortex, Paediatr. Croat., 2007, 51(Supl 1), 93–98

  • [40] Anderson V., Spencer-Smith M., Leventer R., Childhood brain insult: can age at insult help us predict outcome?, Brain, 2009, 132, 45–56 http://dx.doi.org/10.1093/brain/awn293 [Crossref]

  • [41] Staudt M., Gerloff C., Grodd W., Holthausen H., Niemann G., Kragelöh-Mann I., Reorganisation in congenital hemiparesis acquired at different gestational ages, Ann. Neurol., 2004, 56, 854–863 http://dx.doi.org/10.1002/ana.20297 [Crossref]

  • [42] Carr L. J., Harrison L.M., Evans A.L., Stephens J.A., Patterns of central motor reorganisation in hemiplegic cerebral palsy, Brain, 1993, 116, 1223–1247 http://dx.doi.org/10.1093/brain/116.5.1223 [Crossref]

  • [43] Feys H., Eysenn M., Jaspers E., Klingels K., Desloovere K., Molenares G., et al., Relation between neuroradiological findings and upper limb function in hemiplegic cerebral palsy, Eur. J. Paediatr. Neurol., 2010, 14, 169–177 http://dx.doi.org/10.1016/j.ejpn.2009.01.004 [Crossref]

  • [44] Payne B. R., Lomber S.G., Plasticity of the visual cortex after injury: What’s different about the young brain?, Neuroscience, 2002, 8(2), 174–185 http://dx.doi.org/10.1177/107385840200800212 [Crossref]

  • [45] Bates E., Vicari S., Trauner D., Neural mediation of language development: perspectives from lesion studies of infants and children, In: Tager-Flusberg H., (Ed.), Neurodevelopmental disorders, 1st ed., MIT Press, Cambridge, 1999

  • [46] Chilosi A. M., Cipriani P., Pecini C., Acquired focal brain lesions in childhood: effects on development and reorganization of language. Brain Lang., 2008, 106, 211–225 http://dx.doi.org/10.1016/j.bandl.2007.12.010 [Crossref]

  • [47] Lidzba K., Staudt M., Development and reorganization of language after early brain lesions: capacities and limitation of early brain plasticity, Brain Lang., 2008, 106, 165–166 http://dx.doi.org/10.1016/j.bandl.2008.05.003 [Crossref]

  • [48] Dennis M., Developmental plasticity in children: the role of biological risk, development, time, and reserve, J. Commun. Disord., 2000, 33, 321–331 http://dx.doi.org/10.1016/S0021-9924(00)00028-9 [Crossref]

  • [49] Stiles J., Reilly J., Paul B., Moses P., Cognitive development following early brain injury: evidence for neural adaptation, Trends in Cogn. Neurosci., 2005, 9(3), 136–143 http://dx.doi.org/10.1016/j.tics.2005.01.002 [Crossref]

  • [50] Eyre J. A., Corticospinal tract development and its plasticity after perinatal injury, Neurosci. Biobehav. Rev., 2007, 31, 1136–1149 http://dx.doi.org/10.1016/j.neubiorev.2007.05.011 [Crossref]

  • [51] Eyre J. A., Developmental aspects of corticospinal projections, In: Eisen A. (Ed.), Clinical Neurophysiology of Motor Neuron Diseases, 1st ed., Elsevier, Amsterdam, 2004

  • [52] Martin J., The corticospinal system: from development to motor control, The Neuroscientist, 2005, 11, 161–173. http://dx.doi.org/10.1177/1073858404270843 [Crossref]

  • [53] Chen R., Cohen L.G., Hallett M., Nervous system reorganization following injury, Neuroscience, 2002, 111(4), 761–777 http://dx.doi.org/10.1016/S0306-4522(02)00025-8 [Crossref]

  • [54] Staudt M., Brain plasticity following early life brain injury, Semin. Perinatol., 2010, 34, 87–92 http://dx.doi.org/10.1053/j.semperi.2009.10.009 [Crossref]

  • [55] Eyre J. A., Smith M., Dabydeen I., Clowry G.J, Petacchi E., Battini R., et al, Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?, Ann. Neurol., 2007, 62, 493–503 http://dx.doi.org/10.1002/ana.21108 [Crossref]

  • [56] Maegaki Y., Maeoka Y., Ishii S., Shiota M., Takeuchi A., Yoshino K., et al., Mechanisms of central motor reorganization in pediatric hemiplegic patients, Neuropediatrics, 2002, 28, 168–174 http://dx.doi.org/10.1055/s-2007-973695 [Crossref]

  • [57] Cao Y., Vikingstad E.M., Huttenlocher P.R., Towle V.L., Levin D.N., Functional magnetic resonance studies of the reorganization of the human hand sensorimotor area after unilateral brain injury in the perinatal period, Proc. Natl. Acad. Sci. USA, 1991, 91, 9612–9616 http://dx.doi.org/10.1073/pnas.91.20.9612 [Crossref]

  • [58] Eyre J., Taylor J., Villagra F., Smith M., Miller S., Evidence of activity-dependent withdrawal of corticospinal projections during human development, Neurology, 2001, 57, 1543–1554 [Crossref]

  • [59] Martin J.H., Lee S.J., Activity-dependent competition between developing corticospinal terminations, NeuroReport, 1999, 10, 2277–2282 http://dx.doi.org/10.1097/00001756-199908020-00010 [Crossref]

  • [60] Martin J.H., Kably B., Hacking A., Activity-dependent development of cortical axon terminations in the spinal cord and brain stem, Exp. Brain Res., 1999, 125, 184–199 http://dx.doi.org/10.1007/s002210050673 [Crossref]

  • [61] Salimi I., Martin J., Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens, J. Neurosci., 2004, 24, 4952–4961 http://dx.doi.org/10.1523/JNEUROSCI.0004-04.2004 [Crossref]

  • [62] Staudt M., Grodd W., Gerloff C., Erb M., Stitz J, Kragelöh-Mann, Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study, Brain, 2002, 125, 2222–2237 http://dx.doi.org/10.1093/brain/awf227 [Crossref]

  • [63] Kostović I., Judaš M., Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants, Anat. Rec., 2002, 267, 1–6 http://dx.doi.org/10.1002/ar.10069 [Crossref]

  • [64] Wilke M., Staudt M., Juenger H., Grodd W., Braun C., Kragelöh-Mann I., Somatosensory system in two types of motor reorganization in congenital hemiparesis: topographyand function, Hum. Brain Mapp., 2009, 30, 776–788 http://dx.doi.org/10.1002/hbm.20545 [Crossref]

  • [65] Guzzetta A., Bonani P., Biagi L., Tosetti M., Montanaro D., Guerrini R., et al., Reorganisation of the somatosensory system after early brain damage, Clin. Neurophysiol., 2007, 118, 1110–1121 http://dx.doi.org/10.1016/j.clinph.2007.02.014 [Crossref]

  • [66] Rasmussen T., Milner B., The role of early left-brain injury in determining lateralization of cerebral speech functions, Ann. NY Acad. Sci., 1977, 299, 355–369 http://dx.doi.org/10.1111/j.1749-6632.1977.tb41921.x [Crossref]

  • [67] Tillema J. M., Byars A.W., Jacola L.M., Schapiro M.B., Schmithorst V.J., Szaflarski J.P., Cortical reorganization of language functioning following perinatal left MCA stroke, Brain Lang., 2008, 105, 99–111 http://dx.doi.org/10.1016/j.bandl.2007.07.127 [Crossref]

  • [68] Liégeois F., Connelly A., Baldeweg T., Vargha-Khadem F., Speaking with a single cerebral hemisphere: fMRI language organization after hemispherectomy in childhood, Brain Lang., 2008, 106, 195–203 http://dx.doi.org/10.1016/j.bandl.2008.01.010 [Crossref]

  • [69] Staudt M., Grodd W., Niemann G., Wildgruber D., Erb M., Kragelöh-Mann I., Early left periventricular brain lesions induce right hemispheric organization of speech, Neurology 2001, 57, 122–125 [Crossref]

  • [70] Staudt M., Reorganization of the developing human brain following periventricular white matter lesions, Neurosci. Biobehav. Rev., 2007, 31, 1150–1156 http://dx.doi.org/10.1016/j.neubiorev.2007.05.005 [Crossref]

  • [71] Thal D. J., Early lexical development in children with focal brain injury, Brain Lang., 1991, 40, 491–527 http://dx.doi.org/10.1016/0093-934X(91)90145-Q [Crossref]

  • [72] Giedd J., Blumenthal J., Jeffries N., Brain development during childhood and adolescence: a longitudinal MRI study, Nature Neurosci., 1999, 2, 861–863 http://dx.doi.org/10.1038/13158 [Crossref]

  • [73] Anderson V., Catroppa C., Morse S., Haritou F., Rosenfeld J., Recovery of intellectual ability following TBI in childhood: impact of injury severity and age at injury, Pediatr. Neurosurg., 2000, 32, 282–290 http://dx.doi.org/10.1159/000028956 [Crossref]

  • [74] Lidzba K., Staudt M., Wilke M., Kragelöh-Mann I., Visuospatial deficits in patients with early left-hemispheric lesions and functional reorganization of language: consequence of lesion or reorganization?, Neuropsychologia, 2006, 44, 1088–1094 http://dx.doi.org/10.1016/j.neuropsychologia.2005.10.022 [Crossref]

  • [75] Teuber H. L., Recovery of function after brain injury in man, In: Porter R., Fitzimons D.W. (Ed.), Outcome of Severe Damage to the Central Nervous System, Giba Foundation Symposium 34, Elsevier, Amsterdam 1975, 159–190

  • [76] Carlsson G., Uvebant P., Hugdahl K., Arvidson J., Wiklund L.M., von Wendt L., Verbal and non-verbal function of children with right-versus left-hemiplegic cerebral palsy of pre- and perinatal origin, Dev. Med. Child Neurol., 1994, 36, 503–512 http://dx.doi.org/10.1111/j.1469-8749.1994.tb11880.x [Crossref]

  • [77] Kragelöh-Mann I., Imaging of early brain injury and cortical plasticity, Exp. Neurol., 2004, 190, 84–90 http://dx.doi.org/10.1016/j.expneurol.2004.05.037 [Crossref]

  • [78] Pavlova M., Staudt M., Sokolov A., Birbaumer N., Kragelöh-Mann I., Perception and production of biological movement in patients with early periventricular brain lesions, Brain, 2003, 126, 692–701 http://dx.doi.org/10.1093/brain/awg062 [Crossref]

  • [79] Kostović I., Rakić P., Developmental history of transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain, J. Comp. Neurol., 1990, 297, 441–470 http://dx.doi.org/10.1002/cne.902970309 [Crossref]

  • [80] Kolb B., Brain plasticity and behavior, Lawrence Erlbaum Assocates Publishers, Mahwah, New Jersy, 1995

  • [81] Luciana M., Cognitive development in children born preterm: Implications for theories of brain plasticity following early injury, Dev. Psychopathol., 2003, 15, 1017–1047 http://dx.doi.org/10.1017/S095457940300049X [Crossref]

  • [82] Ballantyne A. O., Spilkin A.M., Hesselink J., Trauner D.A., Plasticity in the developing brain: intellectual, language and academic functions in children with ischaemic perinatal stroke, Brain, 2008, 131, 2975–2985 http://dx.doi.org/10.1093/brain/awn176 [Crossref]

  • [83] Gonzalez-Monge S., Boudia B., Ritz A., Abbas-Chorfa F., Rabilloud M., Iwaz J., et al., A 7-year longitudinal follow up of intellectual development in children with congenital hemiplegia, Dev. Med. Child Neurol., 2009, 51, 959–967 http://dx.doi.org/10.1111/j.1469-8749.2009.03339.x [Crossref]

  • [84] Als H., Duffy F.H., McAnulty G.B., Rivkin M.J., Vajapeyam S., Mulkern R.V., et al., Early experience alters brain function and structure, Pediatrics, 2004, 113, 846–857 http://dx.doi.org/10.1542/peds.113.4.846 [Crossref]

  • [85] Briones T. L., Therrien B., Mtzger B., Effects of environment on enhancing functional plasticity following cerebral ischemia, Biol. Res. Nurs., 2000, 4(1), 299–309 http://dx.doi.org/10.1177/109980040000100406 [Crossref]

  • [86] Trachtenberg J. T., Chen B.E., Knott G.W., Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex, Nature, 2002, 420, 788–794 http://dx.doi.org/10.1038/nature01273 [Crossref]

  • [87] Perez M. A., Lungholt B.K., Nyborg K., Motor skill training induces changes in the excitability of the leg cortical area in healthy humans, Exp. Brain Res., 2004, 159, 197–205 http://dx.doi.org/10.1007/s00221-004-1947-5 [Crossref]

  • [88] Holmes J. M., Repka M.X., Kraker R.T., The treatment of amblyopia, Strabismus, 2006, 14, 37–42 http://dx.doi.org/10.1080/09273970500536227 [Crossref]

  • [89] Recanzone G. H., Merzenich M.M., Jenkins W.M., Grajski K.A., Dinse H.R., Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task, J. Neurophysiol., 1992, 67, 1031–1056

  • [90] Wang X., Merzenich M.M., Sameshima K., Jenkins W.M., Remodelling of hand representation in adult cortex determined by timing of tactile stimulation, Nature, 1995, 378, 71–75 http://dx.doi.org/10.1038/378071a0 [Crossref]

  • [91] Kurz M. J., Wislon T.W., Neuromagnetic activity in the somatosensory corticies of children with cerebral palsy, Neurosci. Lett., (in press), DOI: 10.1016/2010.11.053 [Crossref]

  • [92] Badr K. L., Garg M., Kamth M., Intervention for infants with brain injury: results of a randomized controlled study, Infant Beh. Dev., 2006, 29, 80–90 http://dx.doi.org/10.1016/j.infbeh.2005.08.003 [Crossref]

  • [93] Bachy-Rita P., Theoretical basis for brain plasticity after a TBI, Brain Inj., 2003, 17(8), 643–651 http://dx.doi.org/10.1080/0269905031000107133 [Crossref]

  • [94] Tranel D., Eslinger P.J., Effects of early onset brain injury on the development of cognition and behavior: introduction to the special issue, Dev. Neuropsychol., 2000, 3, 273–280 http://dx.doi.org/10.1207/S1532694201Tranel [Crossref]

  • [95] Eyre J. A., Miller S., Clowry G.J., Conway E.A., Watts C., Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres, Brain, 2000, 123, 51–64 http://dx.doi.org/10.1093/brain/123.1.51 [Crossref]

  • [96] de Graaf-Peters V. B., Hadders-Algra M., Ontogeny of the human central nervous system: What is happening when?, Early Hum. Dev., 2006, 82, 257–266 http://dx.doi.org/10.1016/j.earlhumdev.2005.10.013 [Crossref]

  • [97] Judaš M., Šimić G., Petanjek Z., Jovanov-Milošević N., Pletikos M., Vasung L., et al., Zagreb collection of human brains: Unique, versatile but underexploited added value resource for neuroscience community, Ann. NY Acad. Sci., (in press)

  • [98] Kostović I., Judaš M., Transient patterns of cortical lamination during prenatal life: Do they have implications for treatment? Neurosci. Biobehav. Rev., 2007, 31, 1157–1168 http://dx.doi.org/10.1016/j.neubiorev.2007.04.018 [Crossref]

  • [99] Blau-Hospers C., Hadders-Algra M., A systematic review of the effects of early intervention on motor development, Dev. Med. Child Neurol., 2005, 47, 421–432 http://dx.doi.org/10.1017/S0012162205000824 [Crossref]

  • [100] Weinstock M., Alterations induced by gestational stress in brain morphology and behaviour of the offspring, Prog. Neurobiol., 2001, 65, 427–451 http://dx.doi.org/10.1016/S0301-0082(01)00018-1 [Crossref]

  • [101] Levine S. C., Kraus R., Alexander E., Suriyakham L.W., Huttenlocher P.R., IQ decline following early unilateral brain injury: A longitudinal study, Brain Cogn., 2005, 59, 114–123 http://dx.doi.org/10.1016/j.bandc.2005.05.008 [Crossref]

  • [102] Seghier M. L., Huppi P.S., The role of functional magnetic resonance imaging in the study of brain development, injury and recovery in the newborn, Semin. Perinatol., 2009, 10, 79–86

About the article

Published Online: 2011-03-26

Published in Print: 2011-03-01


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-011-0006-5. Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Karen M Benzies, Joyce E Magill-Evans, K Hayden, and Marilyn Ballantyne
BMC Pregnancy and Childbirth, 2013, Volume 13, Number Suppl 1, Page S10

Comments (0)

Please log in or register to comment.
Log in