Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

HSV1 in Alzheimer’s disease: Myth or reality?

Tea Špeljko
  • Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Jutric
  • Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Goran Šimić
  • Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-03-26 | DOI: https://doi.org/10.2478/s13380-011-0009-2


Alzheimer’s disease (AD) is the most frequent cause of dementia in the elderly, characterized by the presence of cerebral amyloid plaques and neurofibrillary tangles. The causes of the disease are not well understood, especially considering that more than 95% of AD patients are non-familial. Due to the similarity of brain regions affected in herpes simplex encephalitis to those mainly affected in AD, and owing to the very high prevalence of latent herpes simplex virus type 1 (HSV1) infection, reactivation of HSV1 was proposed as one of the possible causes of AD. The trigeminal ganglion, located only a few millimeters from the entorhinal cortex, is the primary site of HSV1 latency, although other sites including the sensory neurons, the nodose ganglion of the vagus nerve and other regions of the brain may be involved, possibly in relation to very early neurofibrillary AD changes in the dorsal raphe, locus coeruleus and other brainstem nuclei. Novel data obtained upon infection of cultured neuronal cells and mouse brain with HSV1 further show that HSV1 infection causes intracellular amyloid-beta protein accumulation, as well as abnormal phosphorylation of tau protein, the major component of tangles. Another interesting fact is the existence of a significant degree of homology between HSV1 components and AD susceptibility genes. In this review we summarize findings that reveal connections between the two conditions, as well as different suggestions for the mechanisms of HSV1-induced AD. As most of the available results support a connection of AD and HSV1 infection, antiviral therapy should be taken into consideration for AD treatment following early diagnosis.

Keywords: Alzheimer’s disease; Herpes Simplex Virus Type 1; Apolipoprotein E; Antiviral Therapy

  • [1] Ferri C. P., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., et al., Global prevalence of dementia: a Delphi consensus study, Lancet, 2005, 366, 2112–2117 http://dx.doi.org/10.1016/S0140-6736(05)67889-0CrossrefGoogle Scholar

  • [2] Brickell K. L., Steinbart E. J., Rumbaugh M., Payami H., Schellenberg G. D., Van Deerlin V., et al., Early-onset Alzheimer disease in families with late-onset Alzheimer disease: a potential important subtype of familial Alzheimer disease, Arch Neurol, 2006, 63, 1307–1311 http://dx.doi.org/10.1001/archneur.63.9.1307CrossrefGoogle Scholar

  • [3] Bird T. D., Genetic aspects of Alzheimer disease, Genet Med, 2008, 10, 231–239 http://dx.doi.org/10.1097/GIM.0b013e31816b64dcCrossrefGoogle Scholar

  • [4] Bekris L. M., Yu C. E., Bird T. D., Tsuang D. W., Genetics of Alzheimer disease, J Geriatr Psychiatry Neurol, 2010, 23, 213–227 http://dx.doi.org/10.1177/0891988710383571CrossrefGoogle Scholar

  • [5] Dubois B., Feldman H. H., Jacova C., Dekosky S. T., Barberger-Gateau P., Cummings J., et al., Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria, Lancet Neurol, 2007, 6, 734–746 http://dx.doi.org/10.1016/S1474-4422(07)70178-3CrossrefGoogle Scholar

  • [6] Hort J., O’Brien J. T., Gainotti G., Pirttila T., Popescu B. O., Rektorova I., et al., EFNS guidelines for the diagnosis and management of Alzheimer’s disease, Eur J Neurol, 2010, 17, 1236–1248 http://dx.doi.org/10.1111/j.1468-1331.2010.03040.xCrossrefGoogle Scholar

  • [7] Hardy J. A., Higgins G. A., Alzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, 256, 184–185 http://dx.doi.org/10.1126/science.1566067CrossrefGoogle Scholar

  • [8] Goate A., Chartier-Harlin M. C., Mullan M., Brown J., Crawford F., Fidani L., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease, Nature, 1991, 349, 704–706 http://dx.doi.org/10.1038/349704a0CrossrefGoogle Scholar

  • [9] Hutton M., Lendon C. L., Rizzu P., Baker M., Froelich S., Houlden H., et al., Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17, Nature, 1998, 393, 702–705 http://dx.doi.org/10.1038/31508CrossrefGoogle Scholar

  • [10] Spillantini M. G., Murrell J. R., Goedert M., Farlow M. R., Klug A., Ghetti B., Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc Natl Acad Sci U S A, 1998, 95, 7737–7741 http://dx.doi.org/10.1073/pnas.95.13.7737CrossrefGoogle Scholar

  • [11] Šimić G., Gnjidić M., Kostović I., Cytoskeletal changes as an alternative view on Alzheimer’s disease, Period Biol, 1998, 100, 165–173 Google Scholar

  • [12] Braak H., Braak E., Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease, Neurobiol Aging, 1997, 18, S85–88 http://dx.doi.org/10.1016/S0197-4580(97)00062-6CrossrefGoogle Scholar

  • [13] Braak H., Del Tredici K., The pathological process underlying Alzheimer’s disease in individuals under thirty, Acta Neuropathol, 2011, 121, 171–181 http://dx.doi.org/10.1007/s00401-010-0789-4CrossrefGoogle Scholar

  • [14] Duyckaerts C., Tau pathology in children and young adults: can you still be unconditionally baptist?, Acta Neuropathol, 2011, 121, 145–147 http://dx.doi.org/10.1007/s00401-010-0794-7CrossrefGoogle Scholar

  • [15] Mangialasche F., Solomon A., Winblad B., Mecocci P., Kivipelto M., Alzheimer’s disease: clinical trials and drug development, Lancet Neurol, 2010, 9, 702–716 http://dx.doi.org/10.1016/S1474-4422(10)70119-8CrossrefGoogle Scholar

  • [16] Bierer P., Conference report: the International Conference on Continuous Renal Replacement Therapies: San Diego, California—November 8–10, 1995, Aust Crit Care, 1996, 9, 17–19 http://dx.doi.org/10.1016/S1036-7314(96)70306-5CrossrefGoogle Scholar

  • [17] Braak H., Braak E., Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol, 1991, 82, 239–259 http://dx.doi.org/10.1007/BF00308809CrossrefGoogle Scholar

  • [18] Grinberg L. T., Rub U., Ferretti R. E., Nitrini R., Farfel J. M., Polichiso L., et al., The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset?, Neuropathol Appl Neurobiol, 2009, 35, 406–416 http://dx.doi.org/10.1111/j.1365-2990.2008.00997.xCrossrefGoogle Scholar

  • [19] Šimić G., Stanić G., Mladinov M., Jovanov-Milošević N., Kostović I., Hof P. R., Does Alzheimer’s disease begin in the brainstem?, Neuropathol Appl Neurobiol, 2009, 35, 532–554 http://dx.doi.org/10.1111/j.1365-2990.2009.01038.xCrossrefGoogle Scholar

  • [20] Kapogiannis D., Mattson M. P., Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease, Lancet Neurol, 2011, 10, 187–198 http://dx.doi.org/10.1016/S1474-4422(10)70277-5CrossrefGoogle Scholar

  • [21] Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G. M., et al., Inflammation and Alzheimer’s disease, Neurobiol Aging, 2000, 21, 383–421 http://dx.doi.org/10.1016/S0197-4580(00)00124-XCrossrefGoogle Scholar

  • [22] Mamelak M., Alzheimer’s disease, oxidative stress and mmahydroxybutyrate, Neurobiol Aging, 2007, 28, 1340–1360 http://dx.doi.org/10.1016/j.neurobiolaging.2006.06.008CrossrefGoogle Scholar

  • [23] Chayavichitsilp P., Buckwalter J. V., Krakowski A. C., Friedlander S. F., Herpes simplex, Pediatr Rev, 2009, 30, 119–129 http://dx.doi.org/10.1542/pir.30-4-119CrossrefGoogle Scholar

  • [24] Itzhaki R. F., Wozniak M. A., Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within, J Alzheimers Dis, 2008, 13, 393–405 Google Scholar

  • [25] Wagner E. K., Devi-Rao G., Feldman L. T., Dobson A. T., Zhang Y. F., Flanagan W. M., et al., Physical characterization of the herpes simplex virus latency-associated transcript in neurons, J Virol, 1988, 62, 1194–1202 Google Scholar

  • [26] Fraser N. W., Lawrence W. C., Wroblewska Z., Gilden D. H., Koprowski H., Herpes simplex type 1 DNA in human brain tissue, Proc Natl Acad Sci U S A, 1981, 78, 6461–6465 http://dx.doi.org/10.1073/pnas.78.10.6461CrossrefGoogle Scholar

  • [27] Miller C. S., Danaher R. J., Jacob R. J., Molecular aspects of herpes simplex virus I latency, reactivation, and recurrence, Crit Rev Oral Biol Med, 1998, 9, 541–562 http://dx.doi.org/10.1177/10454411980090040901CrossrefGoogle Scholar

  • [28] Gesser R. M., Valyi-Nagy T., Altschuler S. M., Fraser N. W., Oraloesophageal inoculation of mice with herpes simplex virus type 1 causes latent infection of the vagal sensory ganglia (nodose ganglia), J Gen Virol, 1994, 75( Pt 9), 2379–2386 http://dx.doi.org/10.1099/0022-1317-75-9-2379CrossrefGoogle Scholar

  • [29] Baringer J. R., Pisani P., Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction, Ann Neurol, 1994, 36, 823–829 http://dx.doi.org/10.1002/ana.410360605CrossrefGoogle Scholar

  • [30] Itzhaki R. F., Wozniak M. A., Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer’s disease and other disorders, Prog Lipid Res, 2006, 45, 73–90 http://dx.doi.org/10.1016/j.plipres.2005.11.003CrossrefGoogle Scholar

  • [31] Denaro F. J., Staub P., Colmer J., Freed D. M., Coexistence of Alzheimer disease neuropathology with herpes simplex encephalitis, Cell Mol Biol (Noisy-le-grand), 2003, 49, 1233–1240 Google Scholar

  • [32] WuDunn D., Spear P. G., Initial interaction of herpes simplex virus with cells is binding to heparan sulfate, J Virol, 1989, 63, 52–58 Google Scholar

  • [33] Krummenacher C., Nicola A. V., Whitbeck J. C., Lou H., Hou W., Lambris J. D., et al., Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry, J Virol, 1998, 72, 7064–7074 Google Scholar

  • [34] Bender F. C., Whitbeck J. C., Ponce de Leon M., Lou H., Eisenberg R. J., Cohen G. H., Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry, J Virol, 2003, 77, 9542–9552 http://dx.doi.org/10.1128/JVI.77.17.9542-9552.2003CrossrefGoogle Scholar

  • [35] Pandav R., Dodge H. H., DeKosky S. T., Ganguli M., Blood pressure and cognitive impairment in India and the United States: a crossnational epidemiological study, Arch Neurol, 2003, 60, 1123–1128 http://dx.doi.org/10.1001/archneur.60.8.1123CrossrefGoogle Scholar

  • [36] Mufson E. J., Ikonomovic M. D., Styren S. D., Counts S. E., Wuu J., Leurgans S., et al., Preservation of brain nerve growth factor in mild cognitive impairment and Alzheimer disease, Arch Neurol, 2003, 60, 1143–1148 http://dx.doi.org/10.1001/archneur.60.8.1143CrossrefGoogle Scholar

  • [37] Hardy J., Alzheimer’s disease: genetic evidence points to a single pathogenesis, Ann Neurol, 2003, 54, 143–144 http://dx.doi.org/10.1002/ana.10624CrossrefGoogle Scholar

  • [38] Renvoize E. B., Awad I. O., Hambling M. H., A sero-epidemiological study of conventional infectious agents in Alzheimer’s disease, Age Ageing, 1987, 16, 311–314 http://dx.doi.org/10.1093/ageing/16.5.311CrossrefGoogle Scholar

  • [39] Fukumoto H., Tennis M., Locascio J. J., Hyman B. T., Growdon J. H., Irizarry M. C., Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels, Arch Neurol, 2003, 60, 958–964 http://dx.doi.org/10.1001/archneur.60.7.958CrossrefGoogle Scholar

  • [40] Saunders A. M., Schmader K., Breitner J. C., Benson M. D., Brown W. T., Goldfarb L., et al., Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases, Lancet, 1993, 342, 710–711 http://dx.doi.org/10.1016/0140-6736(93)91709-UCrossrefGoogle Scholar

  • [41] Nathan B. P., Chang K. C., Bellosta S., Brisch E., Ge N., Mahley R. W., et al., The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization, J Biol Chem, 1995, 270, 19791–19799 http://dx.doi.org/10.1074/jbc.270.45.27063CrossrefGoogle Scholar

  • [42] Poirier J., Minnich A., Davignon J., Apolipoprotein E, synaptic plasticity and Alzheimer’s disease, Ann Med, 1995, 27, 663–670 http://dx.doi.org/10.3109/07853899509019253CrossrefGoogle Scholar

  • [43] Arendt T., Schindler C., Bruckner M. K., Eschrich K., Bigl V., Zedlick D., et al., Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele, J Neurosci, 1997, 17, 516–529 Google Scholar

  • [44] Corder E. H., Robertson K., Lannfelt L., Bogdanovic N., Eggertsen G., Wilkins J., et al., HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy, Nat Med, 1998, 4, 1182–1184 http://dx.doi.org/10.1038/2677CrossrefGoogle Scholar

  • [45] Isoniemi H., Tenovuo O., Portin R., Himanen L., Kairisto V., Outcome of traumatic brain injury after three decades—relationship to ApoE genotype, J Neurotrauma, 2006, 23, 1600–1608 http://dx.doi.org/10.1089/neu.2006.23.1600CrossrefGoogle Scholar

  • [46] Wozniak M. A., Itzhaki R. F., Faragher E. B., James M. W., Ryder S. D., Irving W. L., Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus, Hepatology, 2002, 36, 456–463 http://dx.doi.org/10.1053/jhep.2002.34745CrossrefGoogle Scholar

  • [47] Itzhaki R. F., Lin W. R., Shang D., Wilcock G. K., Faragher B., Jamieson G. A., Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease, Lancet, 1997, 349, 241–244 http://dx.doi.org/10.1016/S0140-6736(96)10149-5CrossrefGoogle Scholar

  • [48] Lin W. R., Wozniak M. A., Esiri M. M., Klenerman P., Itzhaki R. F., Herpes simplex encephalitis: involvement of apolipoprotein E genotype, J Neurol Neurosurg Psychiatry, 2001, 70, 117–119 http://dx.doi.org/10.1136/jnnp.70.1.117CrossrefGoogle Scholar

  • [49] Burgos J. S., Ramirez C., Sastre I., Valdivieso F., Effect of apolipoprotein E on the cerebral load of latent herpes simplex virus type 1 DNA, J Virol, 2006, 80, 5383–5387 http://dx.doi.org/10.1128/JVI.00006-06CrossrefGoogle Scholar

  • [50] Burgos J. S., Ramirez C., Guzman-Sanchez F., Alfaro J. M., Sastre I., Valdivieso F., Hematogenous vertical transmission of herpes simplex virus type 1 in mice, J Virol, 2006, 80, 2823–2831 http://dx.doi.org/10.1128/JVI.80.6.2823-2831.2006CrossrefGoogle Scholar

  • [51] Burgos J. S., Ramirez C., Sastre I., Valdivieso F., Apolipoprotein E genotype influences vertical transmission of herpes simplex virus type 1 in a gender specific manner, Aging Cell, 2007, 6, 841–842 http://dx.doi.org/10.1111/j.1474-9726.2007.00332.xCrossrefGoogle Scholar

  • [52] Miller R. M., Federoff H. J., Isoform-specific effects of ApoE on HSV immediate early gene expression and establishment of latency, Neurobiol Aging, 2008, 29, 71–77 http://dx.doi.org/10.1016/j.neurobiolaging.2006.09.006CrossrefGoogle Scholar

  • [53] Itzhaki R. F., Lin W. R., Herpes simplex virus type I in brain and the type 4 allele of the apolipoprotein E gene are a combined risk factor for Alzheimer’s disease, Biochem Soc Trans, 1998, 26, 273–277 Google Scholar

  • [54] Bullido M. J., Martinez-Garcia A., Artiga M. J., Aldudo J., Sastre I., Gil P., et al., A TAP2 genotype associated with Alzheimer’s disease in APOE4 carriers, Neurobiol Aging, 2007, 28, 519–523 http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.011CrossrefGoogle Scholar

  • [55] Itzhaki R. F., Wozniak M. A., Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer’s disease and other disorders, Prog Lipid Res, 2006, 45, 73–90 http://dx.doi.org/10.1016/j.plipres.2005.11.003CrossrefGoogle Scholar

  • [56] Hill J. M., Steiner I., Matthews K. E., Trahan S. G., Foster T. P., Ball M. J., Statins lower the risk of developing Alzheimer’s disease by limiting lipid raft endocytosis and decreasing the neuronal spread of Herpes simplex virus type 1, Med Hypotheses, 2005, 64, 53–58 http://dx.doi.org/10.1016/j.mehy.2003.12.058CrossrefGoogle Scholar

  • [57] Wolozin B., Kellman W., Ruosseau P., Celesia G. G., Siegel G., Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors, Arch Neurol, 2000, 57, 1439–1443 http://dx.doi.org/10.1001/archneur.57.10.1439CrossrefGoogle Scholar

  • [58] Jamieson G. A., Maitland N. J., Wilcock G. K., Yates C. M., Itzhaki R. F., Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type, J Pathol, 1992, 167, 365–368 http://dx.doi.org/10.1002/path.1711670403CrossrefGoogle Scholar

  • [59] Wozniak M. A., Shipley S. J., Combrinck M., Wilcock G. K., Itzhaki R. F., Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients, J Med Virol, 2005, 75, 300–306 http://dx.doi.org/10.1002/jmv.20271CrossrefGoogle Scholar

  • [60] Jamieson G. A., Maitland N. J., Wilcock G. K., Craske J., Itzhaki R. F., Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains, J Med Virol, 1991, 33, 224–227 http://dx.doi.org/10.1002/jmv.1890330403CrossrefGoogle Scholar

  • [61] Cheon M. S., Bajo M., Gulesserian T., Cairns N., Lubec G., Evidence for the relation of herpes simplex virus type 1 to Down syndrome and Alzheimer’s disease, Electrophoresis, 2001, 22, 445–448 http://dx.doi.org/10.1002/1522-2683(200102)22:3<445::AID-ELPS445>3.0.CO;2-8CrossrefGoogle Scholar

  • [62] Kamal A., Stokin G. B., Yang Z., Xia C. H., Goldstein L. S., Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I, Neuron, 2000, 28, 449–459 http://dx.doi.org/10.1016/S0896-6273(00)00124-0CrossrefGoogle Scholar

  • [63] Satpute-Krishnan P., DeGiorgis J. A., Bearer E. L., Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer’s disease, Aging Cell, 2003, 2, 305–318 http://dx.doi.org/10.1046/j.1474-9728.2003.00069.xCrossrefGoogle Scholar

  • [64] Shipley S. J., Parkin E. T., Itzhaki R. F., Dobson C. B., Herpes simplex virus interferes with amyloid precursor protein processing, BMC Microbiol, 2005, 5, 48 http://dx.doi.org/10.1186/1471-2180-5-48CrossrefGoogle Scholar

  • [65] Wozniak M. A., Itzhaki R. F., Shipley S. J., Dobson C. B. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett, 2007, 429, 95–100 http://dx.doi.org/10.1016/j.neulet.2007.09.077CrossrefGoogle Scholar

  • [66] Piacentini R., Civitelli L., Ripoli C., Marcocci M. E., De Chiara G., Garaci E., et al., HSV-1 promotes Ca(2+)-mediated APP phosphorylation and Abeta accumulation in rat cortical neurons, Neurobiol Aging, 2010, DOI: 10.1016/j.biolaging.2010.06.009 Google Scholar

  • [67] Wozniak M. A., Mee A. P., Itzhaki R. F., Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques, J Pathol, 2009, 217, 131–138 http://dx.doi.org/10.1002/path.2449CrossrefGoogle Scholar

  • [68] Kammerman E. M., Neumann D. M., Ball M. J., Lukiw W., Hill J. M., Senile plaques in Alzheimer’s diseased brains: possible association of beta-amyloid with herpes simplex virus type 1 (HSV-1) L-particles, Med Hypotheses, 2006, 66, 294–299 http://dx.doi.org/10.1016/j.mehy.2005.07.033CrossrefGoogle Scholar

  • [69] Lukiw W. J., Cui J. G., Yuan L. Y., Bhattacharjee P. S., Corkern M., Clement C., et al., Acyclovir or Abeta42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells, Neuroreport, 2010, 21, 922–927 http://dx.doi.org/10.1097/WNR.0b013e32833da51aCrossrefGoogle Scholar

  • [70] Wozniak M. A., Frost A. L., Itzhaki R. F., Alzheimer’s disease-specific tau phosphorylation is induced by herpes simplex virus type 1, J Alzheimers Dis, 2009, 16, 341–350 Google Scholar

  • [71] Ziaie Z., Brinker J. M., Kefalides N. A., Lithium chloride suppresses the synthesis of messenger RNA for infected cell protein-4 and viral deoxyribonucleic acid polymerase in herpes simplex virus-1 infected endothelial cells, Lab Invest, 1994, 70, 29–38 Google Scholar

  • [72] Advani S. J., Weichselbaum R. R., Roizman B., The role of cdc2 in the expression of herpes simplex virus genes, Proc Natl Acad Sci U S A, 2000, 97, 10996–11001 http://dx.doi.org/10.1073/pnas.200375297CrossrefGoogle Scholar

  • [73] Vincent I., Jicha G., Rosado M., Dickson D. W., Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain, J Neurosci, 1997, 17, 3588–3598 Google Scholar

  • [74] Letenneur L., Peres K., Fleury H., Garrigue I., Barberger-Gateau P., Helmer C., et al., Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study, PLoS One, 2008, 3, e3637 http://dx.doi.org/10.1371/journal.pone.0003637CrossrefGoogle Scholar

  • [75] Bullido M. J., Martinez-Garcia A., Tenorio R., Sastre I., Munoz D. G., Frank A., et al., Double stranded RNA activated EIF2 alpha kinase (EIF2AK2; PKR) is associated with Alzheimer’s disease, Neurobiol Aging, 2008, 29, 1160–1166 http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.023CrossrefGoogle Scholar

  • [76] Hill J. M., Zhao Y., Clement C., Neumann D. M., Lukiw W. J., HSV-1 infection of human brain cells induces miRNA-146a and Alzheimertype inflammatory signaling, Neuroreport, 2009, 20, 1500–1505 http://dx.doi.org/10.1097/WNR.0b013e3283329c05Google Scholar

  • [77] Carter C. J., Alzheimer’s disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner, Int J Alzheimers Dis, 2010, 2010, 140539 Google Scholar

  • [78] Santana S., Recuero M., Bullido M. J., Valdivieso F., Aldudo J., Herpes simplex virus type I induces the accumulation of intracellular betaamyloid in autophagic compartments and the inhibition of the nonamyloidogenic pathway in human neuroblastoma cells, Neurobiol Aging, 2011 Google Scholar

  • [79] Esiri M. M., Biddolph S. C., Morris C. S., Prevalence of Alzheimer plaques in AIDS, J Neurol Neurosurg Psychiatry, 1998, 65, 29–33 http://dx.doi.org/10.1136/jnnp.65.1.29CrossrefGoogle Scholar

  • [80] Dhingra V., Li Q., Allison A. B., Stallknecht D. E., Fu Z. F., Proteomic profiling and neurodegeneration in West-Nile-virus-infected neurons, J Biomed Biotechnol, 2005, 2005, 271–279 http://dx.doi.org/10.1155/JBB.2005.271CrossrefGoogle Scholar

  • [81] Little C. S., Hammond C. J., MacIntyre A., Balin B. J., Appelt D. M., Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice, Neurobiol Aging, 2004, 25, 419–429 http://dx.doi.org/10.1016/S0197-4580(03)00127-1CrossrefGoogle Scholar

  • [82] Renvoize E. B., Awad I. O., Hambling M. H., A sero-epidemiological study of conventional infectious agents in Alzheimer’s disease, Age Ageing, 1987, 16, 311–314 http://dx.doi.org/10.1093/ageing/16.5.311CrossrefGoogle Scholar

  • [83] Wozniak M. A., Shipley S. J., Combrinck M., Wilcock G. K., Itzhaki R. F., Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients, J Med Virol, 2005, 75, 300–306 http://dx.doi.org/10.1002/jmv.20271CrossrefGoogle Scholar

  • [84] Honjo K., van Reekum R., Verhoeff N. P., Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease?, Alzheimers Dement, 2009, 5, 348–360 http://dx.doi.org/10.1016/j.jalz.2008.12.001CrossrefGoogle Scholar

  • [85] Gerard H. C., Dreses-Werringloer U., Wildt K. S., Deka S., Oszust C., Balin B. J., et al., Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain, FEMS Immunol Med Microbiol, 2006, 48, 355–366 http://dx.doi.org/10.1111/j.1574-695X.2006.00154.xCrossrefGoogle Scholar

  • [86] Balin B. J., Little C. S., Hammond C. J., Appelt D. M., Whittum-Hudson J. A., Gerard H. C., et al., Chlamydophila pneumoniae and the etiology of late-onset Alzheimer’s disease, J Alzheimers Dis, 2008, 13, 371–380 Google Scholar

  • [87] Miklossy J., Chronic inflammation and amyloidogenesis in Alzheimer’s disease — role of Spirochetes, J Alzheimers Dis, 2008, 13, 381–391 Google Scholar

  • [88] Itzhaki R. F., Wozniak M. A., Alzheimer’s disease and infection: Do infectious agents contribute to progression of Alzheimer’s disease?, Alzheimers Dement, 2010, 6, 83–84; author reply 5 http://dx.doi.org/10.1016/j.jalz.2009.07.136Google Scholar

  • [89] Wozniak M. A., Itzhaki R. F., Antiviral agents in Alzheimer’s disease: hope for the future?, Ther Adv Neurol Disord, 2010, 3, 141–152 http://dx.doi.org/10.1177/1756285610370069CrossrefGoogle Scholar

  • [90] Lin W. R., Jennings R., Smith T. L., Wozniak M. A., Itzhaki R. F., Vaccination prevents latent HSV1 infection of mouse brain, Neurobiol Aging, 2001, 22, 699–703 http://dx.doi.org/10.1016/S0197-4580(01)00239-1CrossrefGoogle Scholar

About the article

Published Online: 2011-03-26

Published in Print: 2011-03-01

Citation Information: Translational Neuroscience, Volume 2, Issue 1, Pages 61–68, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-011-0009-2.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in