Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

IMPACT FACTOR 2018: 2.038

CiteScore 2018: 1.90

SCImago Journal Rank (SJR) 2018: 0.665
Source Normalized Impact per Paper (SNIP) 2018: 0.786

Open Access
See all formats and pricing
More options …

Above genetics: Lessons from cerebral development in autism

Emily Williams / Manuel Casanova
Published Online: 2011-06-26 | DOI: https://doi.org/10.2478/s13380-011-0016-3


While a distinct minicolumnar phenotype seems to be an underlying factor in a significant portion of cases of autism, great attention is being paid not only to genetics but to epigenetic factors which may lead to development of the conditions. Here we discuss the indivisible role the molecular environment plays in cellular function, particularly the pivotal position which the transcription factor and adhesion molecule, β-catenin, occupies in cellular growth. In addition, the learning environment is not only integral to postnatal plasticity, but the prenatal environment plays a vital role during corticogenesis, neuritogenesis, and synaptogenesis as well. To illustrate these points in the case of autism, we review important findings in genetics studies (e.g., PTEN, TSC1/2, FMRP, MeCP2, Neurexin-Neuroligin) and known epigenetic factors (e.g., valproic acid, estrogen, immune system, ultrasound) which may predispose towards the minicolumnar and connectivity patterns seen in the conditions, showing how one-gene mutational syndromes and exposure to certain CNS teratogens may ultimately lead to comparable phenotypes. This in turn may shed greater light on how environment and complex genetics combinatorially give rise to a heterogenetic group of conditions such as autism.

Keywords: Beta catenin; Minicolumns; Neural stem cells; Rett syndrome; Fragile X syndrome; Tuberous sclerosis; Valproic acid; Pten phosphohydrolase; Ultrasonography; Cell adhesion molecules; neuronal

  • [1] Liu J., Nyholt D.R., Magnussen P., Parano E., Pavone P., Geschwind D., et al., A genomewide screen for autism susceptibility loci, Am. J. Hum. Genet., 2001, 69, 327–340 CrossrefGoogle Scholar

  • [2] Yonan A.L., Alarcón M., Cheng R, Magnusson P.K., Spence S.J., Palmer A.A., et al., A genomewide screen of 345 families for autism-susceptibility loci, Am. J. Hum. Genet., 2003, 73, 886–897 Google Scholar

  • [3] Williams E.L., Casanova M.F., Autism or autisms? Finding the lowest common denominator, Bol. Asoc. Méd. P.R., 2010 Oct, 102(4), 17–24 Google Scholar

  • [4] Minshew N.J., Williams D.L., The new neurobiology of autism: Cortex, connectivity, and neuronal organization, Arch. Neurol., 2007, 64, 945–950 CrossrefGoogle Scholar

  • [5] Casanova M.F., Buxhoeveden D.P., Switala A.E., Roy E. Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432 CrossrefGoogle Scholar

  • [6] Chenn A., Walsh C.A., Regulation of cerebral cortical size by control of cell cycle exit in neural precursors, Science, 2002, 297, 365–369 Google Scholar

  • [7] Bauman M.L., Kemper T.L., Neuroanatomic observations of the brain in autism: A review and future directions, Int. J. Dev. Neurosci., 2005, 23, 183–187 CrossrefGoogle Scholar

  • [8] Herbert M.R., Ziegler D.A., Makris N., Filipek P.A., Kemper T.L., Normandin J.J., et al., Localization of white matter volume increase in autism and developmental language disorder, Ann. Neurol., 2004, 55, 530–540 CrossrefGoogle Scholar

  • [9] Rinaldi T., Kulangara K., Antoniello K., Markram H., Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 13501–13506 CrossrefGoogle Scholar

  • [10] Rinaldi T., Perrodin C., Markram H., Hyper-connectivity and hyperplasticity in the medial prefrontal cortex in the valproic acid animal model of autism, Front. Neural Circuits, 2008, 2, 1–7 Google Scholar

  • [11] Casanova M.F., El-Baz A., Mott M., Mannheim G., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764 CrossrefGoogle Scholar

  • [12] Beaudet A.L., Autism: highly heritable but not inherited, Nat. Med., 2007, 13, 534–536 CrossrefGoogle Scholar

  • [13] Muhle R., Trentacoste S.V., Rapin I., The genetics of autism, Pediatrics, 2004, 113, e472–e486 CrossrefGoogle Scholar

  • [14] Herbert M.R., Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders, Curr. Opin. Neurol., 2010, 23, 103–110 CrossrefGoogle Scholar

  • [15] Courchesne E., Carper R., Akshoomoff N., Evidence of brain overgrowth in the first year of life in autism, J. Am. Med. Assoc., 2003, 290, 337–344 Google Scholar

  • [16] Rogers S.J., Developmental regression in autism spectrum disorders, Ment. Retard. Dev. Disabil. Res. Rev., 2004, 10, 139–143 CrossrefGoogle Scholar

  • [17] Kumar V., Zhang M.X., Swank M.W., Kunz J., Wu G.Y., Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways, J. Neurosci., 2005, 25, 11288–11299 CrossrefGoogle Scholar

  • [18] McDaniel M.A., Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence, Intelligence, 2005, 33, 337–346 CrossrefGoogle Scholar

  • [19] Burrell B., Postcards from the brain museum, Broadway Books, New York, 2004 Google Scholar

  • [20] Happé F., Frith U., The weak central coherence account: Detail-focused cognitive style in autism spectrum disorders, J. Autism Dev. Disord., 2006, 36, 5–25 CrossrefGoogle Scholar

  • [21] Treffert D.A., Extraordinary people: Understanding savant syndrome, iUniverse, Lincoln, 2006 Google Scholar

  • [22] Redcay E., Courchesne E., When is the brain enlarged in autism? A meta-analysis of all brain size reports, Biol. Psychiatry, 2005, 58, 1–9 CrossrefGoogle Scholar

  • [23] Pilarsky R., Cowden syndrome: A critical review of the clinical literature, J. Genet. Couns., 2009, 18, 13–27 CrossrefGoogle Scholar

  • [24] McBride K.L., Varga E.A., Pastore M.T., Prior T.W., Manickam K, Atkin J.F., et al., Confirmation of study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly, Biol. Autism Res., 2010, 3, 137–141 CrossrefGoogle Scholar

  • [25] Tamguney T., Stokoe D., New insights into PTEN, J. Cell. Sci., 2007, 120, 4071–4079 CrossrefGoogle Scholar

  • [26] Nan X., Ng H.H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., et al., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, 1998, 393, 386–389 Google Scholar

  • [27] Muotri A.R., Marchetto M.C., Coufal N.G., Oefner R., Yeo G., Nakashima K, et al., L1 retrotransposition in neurons is modulated by MeCP2, Nature, 2010, 468, 443–446 CrossrefGoogle Scholar

  • [28] Skene P.J., Illingworth R.S., Webb S., Kerr A.R., James K.D., Turner D.J., et al., Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state, Mol. Cell, 2010, 37, 457–468 CrossrefGoogle Scholar

  • [29] Nelson W.J., Nusse R., Convergence of Wnt, β-catenin, and cadherin pathways, Science, 2004, 303, 1483–1487 CrossrefGoogle Scholar

  • [30] Persad S., Troussard A.A., McPhee T.R., Mulholland D.J., Dedhar S., Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation, J. Cell Biol., 2001, 153, 1161–1174 CrossrefGoogle Scholar

  • [31] Carney R.M., Wolpert C.M., Ravan S.A., Shahbazian M., Ashley-Koch A., Cuccaro M.L., et al., Identification of MeCP2 mutations in a series of females with autistic disorder, Pediatr. Neurol., 2003, 28, 205–211 CrossrefGoogle Scholar

  • [32] Samaco R.C., Nagarajan R.P., Braunschweig D., LaSalle J.M., Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders, Hum. Mol. Genet., 2004, 13, 629–639 CrossrefGoogle Scholar

  • [33] Steelman L.S., Abrams S.L., Whelan J., Bertrand F.E., Ludwig D.E., Bäsecke J., et al., Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia, Leukemia, 2008, 22, 686–707 Google Scholar

  • [34] Kim D.H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., et al., mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery, Cell, 2002, 110, 163–175 CrossrefGoogle Scholar

  • [35] Wiznitzer M., Autism and tuberous sclerosis, J. Child Neurol., 2004, 19, 675–679 Google Scholar

  • [36] Ehninger D., De Vries P.J., Silva A.J., From mTOR to cognition: Molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis, J. Intellect. Disabil. Res., 2009, 53, 838–851 CrossrefGoogle Scholar

  • [37] Griffiths P.D., Gardner S.A., Smith M., Rittey C., Powell T., Hemimegalencephaly and focal megalencephaly in tuberous sclerosis complex, Am. J. Neuroradiol., 1998, 19, 1935–1938 Google Scholar

  • [38] Christophe C., Sékhara T., Rypens F., Ziereisen F., Christiaens F., Dan B., MRI spectrum of cortical malformations in tuberous sclerosis complex, Brain Dev., 2000, 22, 487–493 Google Scholar

  • [39] Way S.W., McKenna J. 3rd, Mietzsch U., Reith R.M., Wu H.C., Gambello M.J., Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse, Hum. Mol. Genet., 2009, 18, 1252–1265 CrossrefGoogle Scholar

  • [40] Bailey A., Luthert P., Dean A., Harding B., Janota I., Montgomery M., et al., A clinicopathological study of autism, Brain, 1998, 121, 889–905 CrossrefGoogle Scholar

  • [41] Wegiel J., Kuchna I., Nowicki K., Imaki H., Wegiel J., Marchi E., et al., The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes, Acta Neuropathol., 2010, 119, 755–770 CrossrefGoogle Scholar

  • [42] Mak B.C., Takemaru K., Kenerson H.L., Moon R.T., Yeung R.S., The tuberin-hamartin complex negatively regulates beta-catenin signaling activity, J. Biol. Chem., 2003, 278, 5947–5951 CrossrefGoogle Scholar

  • [43] Daugherty R.L., Gottardi C.J., Phospho-regulation of β-catenin adhesion and signaling functions, Physiology, 2007, 22, 303–309 CrossrefGoogle Scholar

  • [44] Brown V., Jin P., Ceman S., Darnell J.C., O’Donnell W.T., Tenenbaum S.A., et al., Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome, Cell, 2001, 107, 477–487 CrossrefGoogle Scholar

  • [45] Luo Y., Shan G., Guo W., Smrt R.D., Johnson E.B., Li X., et al., Fragile X mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells, PLoS Genet., 2010, 6, e1000898 CrossrefGoogle Scholar

  • [46] Hagerman R.J., Fragile X syndrome, In: Bauman M.L., Kemper T.L. (Eds.), The neurobiology of autism, 2nd ed., The Johns Hopkins University Press, London, 2005, 251–264 Google Scholar

  • [47] Fatemi S.H., Folsom T.D., The role of fragile X mental retardation protein in major mental disorders, Neuropharmacology, 2011, 60, 1221–1226 CrossrefGoogle Scholar

  • [48] Zalfa F., Marcello G., Primerano B., Moro A., Di Penta A., Reis S., et al., The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses, Cell, 2003, 112, 317–327 CrossrefGoogle Scholar

  • [49] Castrén M., Tervonen T., Kärkkäinen V., Heinonen S., Castrén E., Larsson K., et al., Altered differentiation of neural stem cells in fragile X syndrome, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 17834–17839 CrossrefGoogle Scholar

  • [50] Tervonen T.A., Louhivuori V., Sun X., Hokkanen M.E., Kratochwil C.F., Zebryk P., et al., Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome, Neurobiol. Dis., 2009, 33, 250–259 CrossrefGoogle Scholar

  • [51] De Vries B.B.A., Mohkamsing S., Van den Ouweland A.M.W., Mol E., Gelsema K., Van Rijn M., et al., Screening for the fragile X syndrome among the mentally retarded: a clinical study, J. Med. Genet., 1999, 36, 467–470 Google Scholar

  • [52] Chausovsky A., Bershadsky A.D., Borisy G.G., Cadherin-mediated regulation of microtubule dynamics, Nat. Cell Biol., 2000, 2, 797–804 Google Scholar

  • [53] Reynolds A.B., Daniel J., McCrea P.D., Wheelock M.J., Wu J., Zhang Z., Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes, Mol. Cell Biol., 1994, 14, 8333–8342 Google Scholar

  • [54] Bienz M., β-catenin: A pivot between cell adhesion and Wnt signalling, Curr. Biol., 2004, 15, R65 Google Scholar

  • [55] Ziegler S., Röhrs S., Tickenbrock L., Möröy T., Klein-Hitpass L., Vetter I.R., et al., Novel target genes of the Wnt pathway and statistical insights into Wnt target promoter regulation, FEBS J., 2005, 272, 1600–1615 CrossrefGoogle Scholar

  • [56] Gearhart J., Pashos E.E., Prasad M.K., Pluripotency redux—advances in stem-cell research, N. Engl. J. Med., 2007, 357, 1469–1472 CrossrefGoogle Scholar

  • [57] Cotterman R., Jin V.X., Krig S.R., Lemen J.M., Wey A., Farnham P.J., et al., N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classic transcription factor, Cancer Res., 2008, 68, 9654–9662 CrossrefGoogle Scholar

  • [58] Nusse R., A list of target genes of Wnt/beta-catenin signaling [online resource], Howard Hughes Medical Center, Stanford, 2009 [accessed 2011 Jan 28], http://www.stanford.edu/~rnusse/pathways/targets.html Google Scholar

  • [59] Ding Q., Xia W., Liu J.C., Yang J.Y., Lee D.F., Xia J., et al., Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin, Mol. Cell, 2005, 19, 159–170 CrossrefGoogle Scholar

  • [60] Gherzi R., Trabucchi M., Ponassi M., Ruggiero T., Corte G., Moroni C., et al., The RNA-binding protein KSRP promotes decay of betacatenin mRNA and is inacitvated by PI3K-AKT signaling, PLoS Biol., 2006, 5, e5 Google Scholar

  • [61] Bamji S.X., Shimazu K., Kimes N., Huelsken J., Birchmeier W., Lu B., et al., Role of beta-catenin in synaptic vesicle localization and presynaptic assembly, Neuron, 2003, 40, 719–731 CrossrefGoogle Scholar

  • [62] Kwon C.H., Luikart B.W., Powell C.M., Zhou J., Matheny S.A., Zhang W., et al., Pten regulates neuronal arborization and social interaction in mice, Neuron, 2006, 50, 377–388 CrossrefGoogle Scholar

  • [63] Wang Y., Greenwood J.S., Calcagnotto M.E., Kirsch H.E., Barbaro N.M., Baraban S.C., Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1, Ann. Neurol., 2007, 61, 139–152 CrossrefGoogle Scholar

  • [64] Nau H., Rating D., Koch S., Häuser I., Helge H., Valproic acid and its metabolites: Placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers, J. Pharmacol. Exp. Ther., 1981, 219, 768–777 Google Scholar

  • [65] DiLiberty J.H., Farndon P.A., Dennis N.R., Curry C.J., The fetal valproate syndrome, Am. J. Med. Genet., 1984, 19, 473–481 CrossrefGoogle Scholar

  • [66] Christianson A.L., Chesler N., Kromberg J.G., Fetal valproate syndrome: Clinical and neuro-developmental features in two sibling pairs, Dev. Med. Child Neurol., 1994, 36, 361–369 Google Scholar

  • [67] Moore S.J., Turnpenny P., Quinn A., Glover S., Lloyd D.J., Montgomery T., et al., A clinical study of 57 children with fetal anticonvulsant syndromes, J. Med. Genet., 2000, 37, 489–497 Google Scholar

  • [68] Rasalam A.D., Hailey H., Williams J.H., Moore S.J., Turnpenny P.D., Lloyd D.J., et al., Characteristics of fetal anticonvulsant syndrome associated autistic disorder, Dev. Med. Child Neurol., 2005, 47, 551–555 CrossrefGoogle Scholar

  • [69] Markram H., Rinaldi T., Markram K.. The intense world syndrome—an alternative hypothesis for autism, Front. Neurosci., 2007, 1, 77–96 CrossrefGoogle Scholar

  • [70] Shimshoni J.A., Dalton E.C., Jenkins A., Eyal S., Ewan K., Williams R.S., et al., The effects of central nervous system-active valproic acid constitutional isomers, cyclopropyl analogs, and amide derivatives on neuronal growth cone behavior, Mol. Pharmacol., 2007, 71, 884–892 Google Scholar

  • [71] Billin A.N., Thirlwell H., Ayer D.E., β-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator, Mol. Cell Biol., 2000, 20, 6882–6890 CrossrefGoogle Scholar

  • [72] Wiltse J., Mode of action: inhibition of histone deacetylase, altering WNT-dependent gene expression, and regulation of beta-catenin—developmental effects of valproic acid, Crit. Rev. Toxicol., 2005, 35, 727–738 CrossrefGoogle Scholar

  • [73] Wang Z., Xu L., Zhu X., Cui W., Sun Y., Nishijo H., et al., Demethylation of specitic Wnt/β-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure, Anat. Rec., 2010, 293, 1947–1953 Google Scholar

  • [74] Raballo R., Rhee J., Lyn-Cook R., Leckman J.F., Schwartz M.L., Vaccarino F.M., Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex., J. Neurosci., 2000, 20, 5012–5023 Google Scholar

  • [75] Ryves J.W., Dalton E.C., Harwood A.J., Williams R.S., GSK-3 activity in neocortical cells is inhibited by lithium but not carbamazepine or valproic acid, Bipolar Disord., 2005, 7, 260–265 CrossrefGoogle Scholar

  • [76] Jope R.S., Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes, Trends Pharmacol. Sci., 2003, 24, 441–443 CrossrefGoogle Scholar

  • [77] Yuskaitis C.J., Mines M.A., King M.K., Sweatt J.D., Miller C.A., Jope R.S., Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome, Biochem. Pharmacol., 2010, 79, 632–646 CrossrefGoogle Scholar

  • [78] Hashimoto R., Senatorov V., Kanai H., Leeds P., Chuang D.M., Lithium stimulates progenitor proliferation in cultured brain neurons, Neuroscience, 2003, 117, 55–61 CrossrefGoogle Scholar

  • [79] Laeng P., Pitts R.L., Pemire A.L., Drabik C.E., Weiner A., Tang H., et al., The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells, J. Neurochem., 2004, 91, 238–251 CrossrefGoogle Scholar

  • [80] Vecsler M., Simon A.J., Amariglio N., Rechavi G., Gak E., MeCP2 deficiency downregulates specific nuclear proteins that could be partially recovered by valproic acid in vitro, Epigenetics, 2010, 5, 61–67 CrossrefGoogle Scholar

  • [81] Tropea D., Giacometti E, Wilson N.R., Beard C., McCurry C., Fu D.D., et al., Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 2029–2034 CrossrefGoogle Scholar

  • [82] McCaffrey P., Deustch C.K., Macrocephaly and the control of brain growth in autistic disorders, Prog. Neurobiol., 2005, 77, 38–56 CrossrefGoogle Scholar

  • [83] Croen L.A., Goines P., Braunschweig D., Yolkne R., Yoshida C.K., Grether J.K., et al., Brain-derived neurotrophic factor and autism: Maternal and infant peripheral blood levels in the Early Markers for Autism (EMA) study, Autism Res., 2008, 1, 130–137 CrossrefGoogle Scholar

  • [84] Vaccarino F.M., Grigorenko E.L., Smith K.M., Stevens H.E., Regulation of cerebral cortical size and neuron number by fibroblast growth factors: Implications for autism, J. Autism Dev. Disord., 2009, 39, 511–520 CrossrefGoogle Scholar

  • [85] Baron-Cohen S., The extreme male brain theory of autism, Trends Cogn. Sci., 2002, 6, 248–254 CrossrefGoogle Scholar

  • [86] Knickmeyer R., Baron-Cohen S., Raggatt P., Taylor K., Hackett G., Fetal testosterone and empathy, Horm. Behav., 2006, 49, 282–292 CrossrefGoogle Scholar

  • [87] Knickmeyer R., Baron-Cohen S., Fane B.A., Wheelwright S., Mathews G.A., Conway G.S., et al., Androgens and autistic traits: a study of individuals with congenital adrenal hyperplasia, Horm. Behav., 2006, 50, 148–153 CrossrefGoogle Scholar

  • [88] Hague W.M., Adams J., Rodda C., Brook C.G., De Bruyn R., Grant D.B., et al., The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives, Clin. Endocrinol., 1990, 33, 501–510 CrossrefGoogle Scholar

  • [89] Ingudomnukul E., Baron-Cohen S., Wheelwright S., Knickmeyer R., Elevated rates of testosterone-related disorders in women with autism spectrum conditions, Horm. Behav., 2007, 51, 597–604 CrossrefGoogle Scholar

  • [90] Shayya R., Chang R.J., Reproductive endocrinology of adolescent polycystic ovary syndrome, BJOG, 2010, 117, 150–155 CrossrefGoogle Scholar

  • [91] Yang F., Li X., Sharma M., Sasaki C.Y., Longo D.L., Lim B., et al., Linking beta-catenin to androgen-signaling pathway, J. Biol. Chem., 2002, 277, 11336–11344 CrossrefGoogle Scholar

  • [92] Pawlowski J.E., Ertel J.R., Allen M.P., Xu M., Butler C., Wilson E.M., et al., Liganded androgen receptor interaction with beta-catenin: Nuclear co-localization and modulation of transcriptional activity in neuronal cells, J. Biol. Chem., 2002, 277, 20702–20710 CrossrefGoogle Scholar

  • [93] Cullen D.A., Killick R., Leigh P.N., Gallo J.M., The effect of polyglutamine expansion in the human androgen receptor on its ability to suppress β-catenin-Tcf/Lef dependent transcription, Neurosci. Lett., 2004, 354, 54–58 CrossrefGoogle Scholar

  • [94] MacLusky N.J., Clark A.S., Naftolin F., Goldman-Rakic P.S., Estrogen formation in the mammalian brain: Possible role of aromatase in sexual differentiation of the hippocampus and neocortex, Steroids, 1987, 50, 459–474 CrossrefGoogle Scholar

  • [95] Lemmen J.G., Broekhof J.L.M., Kuiper G.G.J.M., Gustafsson J.Å., van der Saag P.T., van der Burg B., Expression of estrogen receptor alpha and beta during mouse embryogenesis, Mech. Dev., 1999, 81, 163–167 Google Scholar

  • [96] Forlano P.M., Deitcher D.L., Myers D.A., Bass A.H., Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: Aromatase enzyme and mRNA expression identify glia as source, J. Neurosci., 2001, 21, 8943–8955 Google Scholar

  • [97] Wang L., Andersson S., Warner M., Gustafsson J.A., Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 703–708 CrossrefGoogle Scholar

  • [98] Pardridge W.M., Mietus L.J., Transport of steroid hormones through the rat blood-brain barrier, J. Clin. Invest., 1979, 64, 145–154 CrossrefGoogle Scholar

  • [99] Cardona-Gomez P., Perez M., Avila J., Garcia-Segura L.M., Wandosell F., Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus, Mol. Cell. Neurosci., 2004, 25, 363–373 CrossrefGoogle Scholar

  • [100] Perez-Martin M., Azcoitia I., Trejo J.L., Sierra A., Garcia-Segura L.M., An antagonist of estrogen receptors blocks the induction of adult neurogenesis by insulin-like growth factor-I in the dentate gyrus of adult female rat, Eur. J. Neurosci., 2003, 18, 923–930 CrossrefGoogle Scholar

  • [101] Homburg R., Pariente C., Lunenfeld B., Jacobs H.S., The role of insulin-like growth factor-1 (IGF-1) and IGF binding protein-1 (IGFBP-1) in the pathogenesis of polycystic ovary syndrome, Hum. Reprod., 1992, 7, 1379–1383 Google Scholar

  • [102] Kouzmenko A.P., Takeyama K., Ito S., Furatani T., Sawatsubashi S., Maki A., et al., Wnt/β-catenin and estrogen signaling converge in vivo, J. Biol. Chem., 2004, 279, 40255–40258 CrossrefGoogle Scholar

  • [103] Varea O., Garrido J.J., Dopazo A., Mendex P., Garcia-Segura L.M., Wandosell F., Estradiol activates beta-catenin dependent transcription in neurons, PLoS ONE, 2009, 4, e5153 Google Scholar

  • [104] Simoncini T., Hafezi-Mghadam A., Brazil D.P., Ley K., Chin W.W., Liao J.K., Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase, Nature, 2000, 407, 538–541 Google Scholar

  • [105] Kuiper G.G., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., et al., Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta, Endocrinology, 1997, 138, 863–870 Google Scholar

  • [106] Martin J.T., Sexual dimorphism in immune function: The role of prenatal exposure to androgens and estrogens, Eur. J. Pharmacol., 2000, 405, 251–261 Google Scholar

  • [107] Warren R.P., Odell J.D., Warren W.L., Burger R.A., Maciulis A, Daniels W.W., et al., Brief report: Immunoglobulin A deficiency in a subset of autistic subjects, J. Autism Dev. Disord., 1997, 27, 187–192 CrossrefGoogle Scholar

  • [108] Gupta S., Aggarwal S., Rashanravan B., Lee T., Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism, J. Neuroimmunol., 1998, 85, 106–109 Google Scholar

  • [109] Ashwood P., Van de Water J., Is autism an autoimmune disease? Autoimmun. Rev., 2004, 3, 557–562 CrossrefGoogle Scholar

  • [110] Li X., Chauhan A., Sheikh A.M., Patil S., Chauhan V., Li X.M., et al., Elevated immune response in the brain of autistic patients, J. Neuroimmunol., 2009, 207, 111–116 CrossrefGoogle Scholar

  • [111] Singh V.K., Phenotypic expression of autoimmune autistic disorder (AAD): A major subset of autism, Ann. Clin. Psychiatry, 2009, 21, 148–161 Google Scholar

  • [112] Grether J.K., Croen L.A., Anderson M.C., Nelson K.B., Yolken R.H., Neonatally measured immunoglobulins and risk of autism, Autism Res., 2010, 3, 323–332 CrossrefGoogle Scholar

  • [113] Angelidou A., Alysandratos K.D., Asadi S., Zhang B., Francis K., Vasiadi M., et al., Brief report: “Allergic symptoms” in children with autism spectrum disorders. More than meets the eye? J. Autism Dev. Disord., (in press), DOI: 10.1007/s10803-010-1171-z CrossrefGoogle Scholar

  • [114] Chess S., Fernandez P., Korn S., Behavioral consequences of congenital rubella, J. Pediatr., 1978, 93, 699–703 CrossrefGoogle Scholar

  • [115] Taga T., Fukuda S., Role of IL-6 in the neural stem cell differentiation, Clin. Rev. Allergy Immunol., 2005, 28, 249–256 Google Scholar

  • [116] Carpentier P.A., Palmer T.D., Immune influence on adult neural stem cell regulation and function, Neuron, 2009, 64, 79–92 CrossrefGoogle Scholar

  • [117] Wolf S.A., Steiner B., Wengner A., Lipp M., Kammertoens T., Kempermann G., Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus, FASEB J., 2009, 23, 3121–3128 CrossrefGoogle Scholar

  • [118] Sarkar P., Bergman K., O’Connor T.G., Glover V., Maternal antenatal anxiety and amniotic fluid cortisol and testosterone: Possible implications for foetal programming, J. Neuroendocrinol., 2008, 20, 489–496 CrossrefGoogle Scholar

  • [119] Pascual R., Ebner D., Araneda R., Urqueta M.J., Bustamante C., Maternal stress induces long-lasting Purkinje cell developmental impairments in mouse offspring, Eur. J. Pediatr., 2010, 169, 1517–1522 CrossrefGoogle Scholar

  • [120] You J.J., Alter D.A., Stukel T.A., McDonald S.D., Laupacis A., Liu Y., et al., Proliferation of prenatal ultrasound, Can. Med. Assoc. J., 2010, 182, 143–151 CrossrefGoogle Scholar

  • [121] Miller M.W., Brayman A.A., Abramowicz J.S., Obstetric ultrasonography: a biophysical consideration of patient safety-the “rules” have changed, Am. J. Obstet. Gynecol., 1998, 179, 241–254 CrossrefGoogle Scholar

  • [122] Sheiner E., Shoham-Vardi I., Abramowicz J.S., What do clinical users know regarding safety of ultrasound during pregnancy? J. Ultrasound Med., 2007, 26, 319–325 Google Scholar

  • [123] Williams E.L., Casanova M.F., Potential teratogenic effects of ultrasound on corticogenesis: Implications for autism, Med. Hypotheses, 2010, 75, 53–58 CrossrefGoogle Scholar

  • [124] Dyson M., Franks C., Suckling J., Stimulation of healing of varicose ulcers by ultrasound, Ultrasonics, 1976, 14, 232–236 CrossrefGoogle Scholar

  • [125] Duarte L.R., The stimulation of bone growth by ultrasound, Arch. Orthop. Trauma Surg., 1983, 101, 153–159 Google Scholar

  • [126] Ang E.S. Jr, Gluncic V., Duque A., Schafer M.E., Rakic P., Prenatal exposure to ultrasound waves impacts neuronal migration in mice, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 12903–12910 CrossrefGoogle Scholar

  • [127] Sikov M.R., Effects of ultrasound on development. Part 2: Studies in mammalian species and overview, J. Ultrasound Med., 1986, 5, 651–661 Google Scholar

  • [128] Olkku A., Leskinen J.J., Lammi M.J., Hynynen K., Mahonen A., Ultrasound-induced activation of Wnt signaling in human MG-63 osteoblastic cells, Bone, 2010, 47, 320–330 CrossrefGoogle Scholar

  • [129] Takeuchi R., Ryo A., Komitsu N., Mikuni-Takagaki Y., Fukui A., Takagi Y., et al., Low-intensity pulsed ultrasound activates the phosophatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: A basic science study, Arthritis Res. Ther., 2008, 10, R77 CrossrefGoogle Scholar

  • [130] Mitragotri S., Blankschtein D., Langer R., Ultrasound-mediated transdermal protein delivery, Science, 1995, 269, 850–853 Google Scholar

  • [131] Van Wamel A., Bouakaz A., Versluis M., De Jong N., Micromanipulation of endothelial cells: Ultrasound-microbubble-cell interaction, Ultrasound Med. Biol., 2004, 30, 1255–1258 CrossrefGoogle Scholar

  • [132] VanBavel E., Effects of shear stress on endothelial cells: Possible relevance for ultrasound applications, Prog. Biophys. Mol. Biol., 2007, 93, 374–383 CrossrefGoogle Scholar

  • [133] Colombo A., Hall P., Nakamura S., Almagor Y., Maiello L., Martini G., et al., Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance, Circulation, 1995, 91, 1676–1688 CrossrefGoogle Scholar

  • [134] Rioufol G., Finet G., Ginon I., André-Fouët X., Rossi R., Vialle E., et al., Multiple atherosclerotic plaque rupture in acute coronary syndrome: A three-vessel intravascular ultrasound study, Circulation, 2002, 106, 804–808 CrossrefGoogle Scholar

  • [135] Yamamoto K., Takahashi T., Asahara T., Ohura N., Sokabe T., Kamiya A., et al., Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress, J. Appl. Physiol., 2003, 95, 2081–2088 CrossrefGoogle Scholar

  • [136] Reher P., Doan N., Bradnock B., Meghji S., Harris M., Effect of ultrasound on the production of IL-8, basic FGF and VEGF, Cytokine, 1999, 11, 416–423 CrossrefGoogle Scholar

  • [137] Reher P., Harris M., Whiteman M., Hai H.K., Meghji S., Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts, Bone, 2002, 31, 236–241 CrossrefGoogle Scholar

  • [138] Raab S., Plate K.H., Different networks, common growth factors: Shared growth factors and receptors of the vascular and the nervous system, Acta Neuropathol., 2007, 113, 607–626 CrossrefGoogle Scholar

  • [139] Shen Q., Goderie S.K., Jin L., Karanth N., Sun Y., Abramova N., et al., Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells, Science, 2004, 304, 1338–1340 CrossrefGoogle Scholar

  • [140] Sun J., Zhou W., Ma D., Yang Y., Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling, Dev. Dyn., 2010, 239, 2345–2353 Google Scholar

  • [141] Shen Q., Wang Y., Kokovay E., Lin G., Chuang S.M., Goderie S.K., et al., Adult SVZ stem cells lie in a vascular niche: A quantitative analysis of niche cell-cell interactions, Cell Stem Cell, 2008, 3, 289–300 Google Scholar

  • [142] Ye H., Liu J., Wu J.Y., Cell adhesion molecules and their involvement in autism spectrum disorder, Neurosignals, 2011, 18, 62–71 Google Scholar

  • [143] Jamain S., Quach H., Betancur C., Råstam M., Colineaux C., Gillberg I.C., et al., Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nat. Genet., 2003, 34, 27–29 Google Scholar

  • [144] Laumonnier F., Bonnet-Brilhault F., Gomot M., Blanc R., David A., Moizard M.P., et al., X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family, Am. J. Hum. Genet., 2004, 74, 552–557 Google Scholar

  • [145] Feng J., Schroer R., Yan J., Song W., Yang C., Bockholt A, et al., High frequency of neurexin 1beta signal peptide structural variants in patients with autism, Neurosci. Lett., 2006, 409, 10–13 CrossrefGoogle Scholar

  • [146] Kim H.G., Kishikawa S., Higgins A.W., Seong I.S., Donovan D.J., Shen Y., et al., Disruption of neurexin 1 associated with autism spectrum disorder, Am. J. Hum. Genet., 2008, 82, 199–207 CrossrefGoogle Scholar

  • [147] Chen S.X., Tari P.K., She K., Haas K., Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogenesis via growth stabilization mechanisms in vivo, Neuron, 2010, 67, 967–983 CrossrefGoogle Scholar

  • [148] Chih B., Engelman H., Scheiffele P., Control of excitatory and inhibitory synapse formation by neuroligins, Science, 2005, 307, 1324–1328 Google Scholar

  • [149] Budreck E.C., Scheiffele P., Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses, Eur. J. Neurosci., 2007, 26, 1738–1748 CrossrefGoogle Scholar

  • [150] Hirao K., Hata Y., Ide N., Takeuchi M., Irie M., Yao I., et al., A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins, J. Biol. Chem., 1998, 273, 21105–21110 CrossrefGoogle Scholar

  • [151] Barrow S.L., Constable J.R., Clark E., El-Sabeawy F., McAllister A.K., Washbourne P., Neuroligin1: A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis, Neural Dev., 2009, 4, 17 Google Scholar

  • [152] Murase S., Mosser E., Schuman E.M., Depolarization drives betacatenin into neuronal spines promoting changes in synaptic structure and function, Neuron, 2002, 35, 91–105 CrossrefGoogle Scholar

  • [153] Stan A., Pielarski K.N., Brigadski T., Wittenmayer N., Fedorchenko O., Gohla A., et al., Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation, Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 11116–11121 CrossrefGoogle Scholar

  • [154] Yu X., Malenka R.C., β-catenin is critical for dendritic morphogenesis, Nat. Neurosci., 2003, 6, 1169–1177 CrossrefGoogle Scholar

  • [155] Abe K., Takeichi M., NMDA-receptor activation induces calpainmediated β-catenin cleavages for triggering gene expression, Neuron, 2007, 53, 387–397 CrossrefGoogle Scholar

  • [156] Derksen M.J., Ward N.L., Hartle K.D., Ivanco T.L., MAP2 and synaptophysin protein expression following motor learning suggests dynamic regulation and distinct alterations coinciding with synaptogenesis, Neurobiol. Learn. Mem., 2007, 87, 404–415 Google Scholar

  • [157] Antar L.N., Afroz R., Dictenberg J.B., Carroll R.C., Bassell G.J., Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and Fmr1 mRNA localization differentially in dendrites and at synapses, J. Neurosci., 2004, 24, 2648–2655 CrossrefGoogle Scholar

  • [158] Wang H., Dictenberg J.B., Ku L., Li W., Bassell G.J., Feng Y., Dynamic association of the fragile X mental retardation protein as a messenger ribonucleoprotein between microtubules and polyribosomes, Mol. Biol. Cell, 2008, 19, 105–114 CrossrefGoogle Scholar

  • [159] Nimchinsky E.A., Oberlander A.M., Svoboda K., Abnormal development of dendritic spines in FMR1 knock-out mice, J. Neurosci., 2001, 21, 5139–5146 Google Scholar

  • [160] Allin E.F., Evolution of the mammalian middle ear, J. Morphol., 1975, 147, 403–437 CrossrefGoogle Scholar

  • [161] Sakarya O., Armstrong K.A., Adamska M., Adamski M., Wang I.F., Tidor B., et al., A post-synaptic scaffold at the origin of the animal kingdom, PLoS ONE, 2007, 2, e506 Google Scholar

  • [162] Nickel M., Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera? Invertebr. Biol., 2010, 129, 1–16 CrossrefGoogle Scholar

  • [163] Pinto D., Pagnamenta A.T., Klei L., Anney R., Merico D., Regan R., et al., Functional impact of global rare copy number variation in autism spectrum disorders, Nature, 2010, 466, 368–372 CrossrefGoogle Scholar

  • [164] Kolkova K., Novitskaya V., Pedersen N., Berezin V., Bock E., Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway, J. Neurosci., 2000, 20, 2238–2246 Google Scholar

  • [165] Chang L., Karin M., Mammalian MAP kinase signalling cascades, Nature, 2001, 410, 37–40 CrossrefGoogle Scholar

  • [166] Laws S.C., Carey S.A., Ferrell J.M., Bodman G.J., Cooper R.L., Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats, Toxicol. Sci., 2000, 54, 154–167 CrossrefGoogle Scholar

  • [167] Hertz-Picciotto I., Delwiche L., The rise in autism and the role of age at diagnosis, Epidemiology, 2009, 20, 84–90 CrossrefGoogle Scholar

About the article

Published Online: 2011-06-26

Published in Print: 2011-06-01

Citation Information: Translational Neuroscience, Volume 2, Issue 2, Pages 106–120, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-011-0016-3.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Harsha Ganesan, Venkatesh Balasubramanian, Mahalaxmi Iyer, Anila Venugopal, Mohana Devi Subramaniam, Ssang-Goo Cho, and Balachandar Vellingiri
BMB Reports, 2019, Volume 52, Number 7, Page 424
Weijun Luo, Chaolin Zhang, Yong-hui Jiang, and Cory R. Brouwer
Science Advances, 2018, Volume 4, Number 4, Page e1701799
Marieke Klein, Marjolein van Donkelaar, Ellen Verhoef, and Barbara Franke
American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, Volume 174, Number 5, Page 485
Silvia Ripamonti, Mateusz C Ambrozkiewicz, Francesca Guzzi, Marta Gravati, Gerardo Biella, Ingo Bormuth, Matthieu Hammer, Liam P Tuffy, Albrecht Sigler, Hiroshi Kawabe, Katsuhiko Nishimori, Mauro Toselli, Nils Brose, Marco Parenti, and JeongSeop Rhee
eLife, 2017, Volume 6
Adrian Zhubi, Ying Chen, Alessandro Guidotti, and Dennis R. Grayson
International Journal of Developmental Neuroscience, 2017
Eva Loth, Declan G. Murphy, and Will Spooren
Frontiers in Psychiatry, 2016, Volume 7
Jill Hutton
Frontiers in Human Neuroscience, 2016, Volume 10
Martina Zatkova, Jan Bakos, Julius Hodosy, and Daniela Ostatnikova
Biomedical Papers, 2016, Volume 160, Number 2, Page 201
Dennis R Grayson and Alessandro Guidotti
Epigenomics, 2016, Volume 8, Number 1, Page 85
Yehezkel Ben-Ari
Nature Reviews Neuroscience, 2015, Volume 16, Number 8, Page 498
Jan Bakos, Zuzana Bacova, Stephen G. Grant, Ana M. Castejon, and Daniela Ostatnikova
NeuroMolecular Medicine, 2015, Volume 17, Number 3, Page 297
Penelope A.E. Main, Philip Thomas, Manya T. Angley, Robyn Young, Adrian Esterman, Catherine E. King, and Michael F. Fenech
Autism Research, 2015, Volume 8, Number 1, Page 94
S Baron-Cohen, B Auyeung, B Nørgaard-Pedersen, D M Hougaard, M W Abdallah, L Melgaard, A S Cohen, B Chakrabarti, L Ruta, and M V Lombardo
Molecular Psychiatry, 2015, Volume 20, Number 3, Page 369
Aislinn J. Williams and Hisashi Umemori
Frontiers in Synaptic Neuroscience, 2014, Volume 6
M. Parellada, M.J. Penzol, L. Pina, C. Moreno, E. González-Vioque, G. Zalsman, and C. Arango
European Psychiatry, 2014, Volume 29, Number 1, Page 11
Dimitrios I. Zafeiriou, Athina Ververi, Vaios Dafoulis, Efrosini Kalyva, and Euthymia Vargiami
American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, Volume 162, Number 4, Page 327
Jyoti Rajan Sharma, Zainunisha Arieff, Hajirah Gameeldien, Muneera Davids, Mandeep Kaur, and Lize van der Merwe
Genetic Testing and Molecular Biomarkers, 2013, Volume 17, Number 2, Page 93
Marco Atzori, Francisco Garcia-Oscos, and Jose Alfredo Mendez
Future Medicinal Chemistry, 2012, Volume 4, Number 17, Page 2177
Jacob M. Smith, Jennifer Xu, and Elizabeth M. Powell
NeuroImage: Clinical, 2012, Volume 1, Number 1, Page 66
Emily Williams, Ayman El-Baz, Matthew Nitzken, Andrew Switala, and Manuel Casanova
Translational Neuroscience, 2012, Volume 3, Number 1

Comments (0)

Please log in or register to comment.
Log in