Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Gyral window mapping of typical cortical folding using MRI

Brynn Dombroski / Andrew Switala / Ayman El-Baz / Manuel Casanova
Published Online: 2011-06-26 | DOI: https://doi.org/10.2478/s13380-011-0018-1

Abstract

Using the NIH Pediatric MRI Data Repository for normative developmental studies, white matter depth within the gyri of the frontal, temporal, parietal, and occipital lobes, and of the left and right hemisphere was identified for 312 typically developing children and young adults (168 male and 144 female) between 4 and 23 years of age. There was no significant age difference between male and female groups overall (F 1,867 = 0.0002; p = 0.99) or per-visit (F 2,867 = 2.18; p = 0.86). There was significant dependence of gyral window upon age (F 1,6544 = 115, p < 0.0001), lobe (F 3,6544 = 229, p < 0.0001), hemisphere (F 1,6544 = 5.23, p = 0.022), age*sex (F 1,6544 = 13.8, p = 0.0002), age*lobe (F 3,6544 = 120, p = 0.0001), and age*hemisphere (F 1,6544 = 4.41, p = 0.036). Gyrification increased with age in both males and females in the frontal, temporal and parietal lobes with opposite effects observed in the occipital lobe. Relative gyral depth, as measured in this study, was significantly (p < 0.0001) inversely correlated with gyrification index. Previous studies relate gyral window measurements to the differential expression of short and long corticocortical projections. Our results therefore suggest that the pattern of corticocortical connections is malleable during the first two decades of development.

Keywords: Cerebral cortex; Gyral window; Gyrification index; Magnetic resonance imaging

  • [1] De Bellis M.D., Keshavan M.S., Beers S.R., Hall J., Frustaci K., Masalehdan A., et al., Sex differences in brain maturation during childhood and adolescence, Cereb. Cortex, 2001, 11, 552–557 http://dx.doi.org/10.1093/cercor/11.6.552CrossrefGoogle Scholar

  • [2] Sowell E.R., Thompson P.M., Tessner K.D., Toga A.W., Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation, J. Neurosci., 2001, 21, 8819–8829 Google Scholar

  • [3] Zilles K., Armstrong E., Schleicher A., Kretschmann H.-J., The human pattern of gyrification in the cerebral cortex, Anat. Embryol. (Berl). 1988, 179, 173–179 http://dx.doi.org/10.1007/BF00304699CrossrefGoogle Scholar

  • [4] Moorhead T.W.J., Harris J.M., Stanfield A.C., Job D.E., Best J.J.K., Johnstone E.C., et al., Automated computation of the Gyrification Index in prefrontal lobes: Methods and comparison with manual implementation, Neuroimage, 2006, 31, 1560–1566 http://dx.doi.org/10.1016/j.neuroimage.2006.02.025CrossrefGoogle Scholar

  • [5] Prothero J.W., Sundsten J.W., Folding of the cerebral cortex in mammals: a scaling model, Brain. Behav. Evol., 1984, 24, 152–167 http://dx.doi.org/10.1159/000121313CrossrefGoogle Scholar

  • [6] Sowell E.R., Thompson P.M., Holmes C.J., Batth R., Jernigan T.L., Toga A.W., Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping, Neuroimage, 1999, 9, 587–597 http://dx.doi.org/10.1006/nimg.1999.0436CrossrefGoogle Scholar

  • [7] Giedd J.N., Blumenthal J., Jeffries N.O., Rajapakse J.C., Vaituzis A.C., Liu H., et al., Development of the human corpus callosum during childhood and adolescence: a longitudinal MRI study, Prog. Neuropsychopharmacol. Biol. Psychiatry, 1999, 23, 571–588 http://dx.doi.org/10.1016/S0278-5846(99)00017-2CrossrefGoogle Scholar

  • [8] Casanova M.F., El-Baz A., Mott M., Glenn M., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764 http://dx.doi.org/10.1007/s10803-008-0681-4CrossrefWeb of ScienceGoogle Scholar

  • [9] Brain Development Cooperative Group, Evans A.C., The NIH MRI study of normal brain development, Neuroimage, 2006, 30, 184–202 http://dx.doi.org/10.1016/j.neuroimage.2005.09.068CrossrefGoogle Scholar

  • [10] El-Baz A., Farag A., Ali A., Gimel’farb G., Casanova M.F., A framework for unsupervised segmentation of multi-modal medical images, In: R.R. Beichel and M. Sonka, (Eds.), Computer vision approaches to medical image analysis, Springer, New York, 2006, 120–131 http://dx.doi.org/10.1007/11889762_11Google Scholar

  • [11] Patterson H.D., Thompson R., Recovery of inter-block information when block sizes are unequal, Biometrika, 1971, 58, 545–554 http://dx.doi.org/10.1093/biomet/58.3.545CrossrefGoogle Scholar

  • [12] Pinheiro J., Bates D., DebRoy S., Sarkar D., R Development Core Team, nlme: Linear and nonlinear mixed effects models. 2010. Google Scholar

  • [13] Fraley C., Raftery A.E., Model-based clustering, discriminant analysis, and density estimation, J. Am. Stat. Soc., 2002, 97, 611–631 CrossrefGoogle Scholar

  • [14] Fraley C., Raftery A.E., MCLUST version 3 for R: normal mixture modeling and model-based clustering. 2006, University of Washington: Seattle. Google Scholar

  • [15] Goldman-Rakic P.S., Cools A.R., Srivastava K., The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1996, 351, 1445–1453 http://dx.doi.org/10.1098/rstb.1996.0129CrossrefGoogle Scholar

  • [16] Grieve S.M., Williams L.M., Paul R.H., Clark C.R., Gordon E., Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study, AJNR. Am. J. Neuroradiol., 2007, 28, 226–235 Google Scholar

  • [17] Caviness V.S., Jr., Kennedy D.N., Richelme C., Rademacher J., Filipek P.A., The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images, Cereb. Cortex, 1996, 6, 726–736 http://dx.doi.org/10.1093/cercor/6.5.726CrossrefGoogle Scholar

  • [18] Giedd J.N., Castellanos F.X., Rajapakse J.C., Vaituzis A.C., Rapoport J.L., Sexual dimorphism of the developing human brain, Prog. Neuropsychopharmacol. Biol. Psychiatry, 1997, 21, 1185–1201 http://dx.doi.org/10.1016/S0278-5846(97)00158-9CrossrefGoogle Scholar

  • [19] Courchesne E., Chisum H.J., Townsend J., Cowles A., Covington J., Egaas B., et al., Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers, Radiology, 2000, 216, 672–682 CrossrefGoogle Scholar

  • [20] Sowell E.R., Peterson B.S., Kan E., Woods R.P., Yoshii J., Bansal R., et al., Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age, Cereb. Cortex, 2007, 17, 1550–1560 http://dx.doi.org/10.1093/cercor/bhl066Web of ScienceCrossrefGoogle Scholar

  • [21] Kimura D., Sex, sexual orientation and sex hormones influence human cognitive function, Curr. Opin. Neurobiol., 1996, 6, 259–263 http://dx.doi.org/10.1016/S0959-4388(96)80081-XCrossrefGoogle Scholar

  • [22] Roberts J.E., Bell M.A., Sex differences on a mental rotation task: variations in electroencephalogram hemispheric activation between children and college students, Dev. Neuropsychol., 2000, 17, 199–223 http://dx.doi.org/10.1207/S15326942DN1702_04CrossrefGoogle Scholar

  • [23] Baron-Cohen S., The essential difference: the truth about the male and female brain, Basic Books, New York, 2003 Google Scholar

  • [24] Luders E., Gaser C., Narr K.L., Toga A.W., Why sex matters: brain size independent differences in gray matter distributions between men and women, J. Neurosci., 2009, 29, 14265–14270 http://dx.doi.org/10.1523/JNEUROSCI.2261-09.2009CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2011-06-26

Published in Print: 2011-06-01


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-011-0018-1.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in