Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

1 Issue per year

IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
See all formats and pricing
More options …

Recent advances in psychoneuroimmunology: Inflammation in psychiatric disorders

Monojit Debnath
  • Laboratory of Psychiatric Genetics, INSERM U955, Mondor Institute of Biomedical Research, Creteil, 94010, France
  • Email:
/ Karen Doyle
  • Clinical Neuroimaging Laboratory& the Depts of Anatomy, Psychiatry, and Physiology, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
  • Email:
/ Camilla Langan
  • Clinical Neuroimaging Laboratory& the Depts of Anatomy, Psychiatry, and Physiology, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
  • Email:
/ Colm McDonald
  • Clinical Neuroimaging Laboratory& the Depts of Anatomy, Psychiatry, and Physiology, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
  • Email:
/ Brian Leonard
  • Division of Cellular Neuroscience, Department of Psychiatry and Neuropsychology, University of Maastricht, 6200 MD, Maastricht, The Netherlands
  • Laboratory of Psychoneuroimmunology, University Psychiatric Hospital, Ludwig-Maximilians University, D-80336, Munich, Germany
  • Email:
/ Dara Cannon
  • Clinical Neuroimaging Laboratory& the Depts of Anatomy, Psychiatry, and Physiology, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
  • Email:
Published Online: 2011-06-26 | DOI: https://doi.org/10.2478/s13380-011-0019-0


Psychiatric disorders are common and complex and their precise biological underpinnings remain elusive. Multiple epidemiological, molecular, genetic and gene expression studies suggest that immune system dysfunction may contribute to the risk for developing psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder. However, the precise mechanisms by which inflammation-related events confer such risk are unclear. In this review, we examine the peripheral and central evidence for inflammation in psychiatric disorders and the potential molecular mechanisms implicated including inhibition of neurogenesis, apoptosis, the HPA-axis, the role of brain-derived neurotrophic factor and the interplay between the glutamatergic, dopaminergic and serotonergic neurotransmitter systems.

Keywords: Inflammation; Cytokines; Etiology; Psychiatric disorders; Neurotransmitter imbalance; Maternal infections; Apoptosis; Brain Derived Neurotrophic Factor; Hypothalamic Pituitary Adrenal Axis; Glutamate; Dopamine; Serotonin; Quinolinic acid; Kynurenic acid

  • [1] Kendler K.S., Prescott C.A., Myers J., Neale M.C., The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women, Arch. Gen. Psychiatry, 2003, 60, 929–937 http://dx.doi.org/10.1001/archpsyc.60.9.929CrossrefGoogle Scholar

  • [2] Muller N., Schwarz M.J., Immune system and schizophrenia, Curr. Immunol. Rev., 2010, 6, 213–220 http://dx.doi.org/10.2174/157339510791823673CrossrefGoogle Scholar

  • [3] Stefansson H., Ophoff R.A., Steinberg S., Andreassen O.A., Cichon S., Rujescu D., et al., Common variants conferring risk of schizophrenia, Nature, 460, 744–747 Google Scholar

  • [4] Shi J., Levinson D.F., Duan J., Sanders A.R. Zheng Y., Peer I., et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, 2009, 460, 753–757 Google Scholar

  • [5] Williams H.J., Craddock N., Russo G., Hamshere M., Moskvina V., Dwyer R., et al., Most genome wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross traditional diagnostic boundaries, Hum. Mol. Genet., 2011, 20, 387–391 http://dx.doi.org/10.1093/hmg/ddq471CrossrefGoogle Scholar

  • [6] Leonard B.E., The immune system, depression and the action of antidepressants, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25, 767–780 http://dx.doi.org/10.1016/S0278-5846(01)00155-5CrossrefGoogle Scholar

  • [7] Debnath M., Das S.K., Bera N.K., Nayak C.R., Chaudhuri T.K., Genetic associations between delusional disorder and paranoid schizophrenia: a novel etiologic approach, Can. J. Psychiat., 2006, 51, 342–349 Google Scholar

  • [8] Potvin S., Stip E., Sepehry A.A., Gendron A., Bah R., Kouassi E., Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review, Biol. Psychiatry, 2008, 63, 801–808 http://dx.doi.org/10.1016/j.biopsych.2007.09.024CrossrefGoogle Scholar

  • [9] Shirts B.H., Wood J., Yolken R.H., Nimgaonkar V.L., Association study of IL10, IL1β, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: suggestive association with rs16944 at IL1β, Schizophr. Res., 2006, 88, 235–244 http://dx.doi.org/10.1016/j.schres.2006.06.037Google Scholar

  • [10] Clerici M., Arosio B., Mundo E., Cattaneo E., Pozzoli S., Dell’Osso B., et al., Cytokine polymorphisms in the pathophysiology of mood disorders, CNS Spectr., 2009, 14, 419–425 Google Scholar

  • [11] Ryan M.M., Lockstone H.E., Huffaker S.J., Wayland M.T., Webster M.J., Bahn S., Gene expression analysis of bipolar disorder reveals down regulation of the ubiquitin cycle and alterations in synaptic genes, Mol. Psychiatry, 2006, 11, 965–978 http://dx.doi.org/10.1038/sj.mp.4001875CrossrefGoogle Scholar

  • [12] Fan X., Goff D.C., Henderson D.C., Inflammation and schizophrenia, Exp. Rev. Neurother., 2007, 7, 789–796 http://dx.doi.org/10.1586/14737175.7.7.789CrossrefGoogle Scholar

  • [13] Goldstein B.I., Kemp D.E., Soczynska J.K., McIntyre R.S., Inflammation and the phenomenology, pathophysiology, co-morbidity, and treatment of bipolar disorder: a systematic review of the literature, J. Clin. Psychiatry, 2009, 70, 1078–1090 http://dx.doi.org/10.4088/JCP.08r04505CrossrefGoogle Scholar

  • [14] Watanabe Y., Someya T., Nawa H., Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models, Psychiatry Clin.Neurosci., 2010, 64, 217–230 http://dx.doi.org/10.1111/j.1440-1819.2010.02094.xCrossrefGoogle Scholar

  • [15] Shelton R.C., Claiborne J., Sidoryk-Wegrzynowicz M., Reddy R., Aschner M., Lewis D.A., et al., Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol. Psychiatry, (in press), Doi:10.1038/mp.2010.52 CrossrefGoogle Scholar

  • [16] Sprague A.H., Khalil R.A., Inflammatory cytokines in vascular dysfunction and vascular disease, Biochem. Pharmacol., 2009, 78, 539–552 http://dx.doi.org/10.1016/j.bcp.2009.04.029CrossrefGoogle Scholar

  • [17] Wyss-Coray T., Mucke L., Inflammation in neurodegenerative disease-a double-edged sword, Neuron, 2002, 35, 419–432 http://dx.doi.org/10.1016/S0896-6273(02)00794-8CrossrefGoogle Scholar

  • [18] Tansey M.G., Inflammation in neuropsychiatric disease, Neurobiol. Dis., 2010, 37, 491–492 http://dx.doi.org/10.1016/j.nbd.2009.12.004CrossrefGoogle Scholar

  • [19] Kronfol Z., Remick D.G., Cytokines and the brain: implications for clinical psychiatry, Am. J. Psychiat., 2000, 157, 683–694 http://dx.doi.org/10.1176/appi.ajp.157.5.683CrossrefGoogle Scholar

  • [20] Reichenberg A., Yirmiya R., Schuld A., Kraus T., Haack M., Morag A., et al., Cytokine-associated emotional and cognitive disturbances in humans, Arch. Gen. Psychiatry, 2001, 58, 445–452 http://dx.doi.org/10.1001/archpsyc.58.5.445CrossrefGoogle Scholar

  • [21] Wilson C.J., Finch C.E., Cohen H.J., Cytokines and cognition-the case for a head-to-toe inflammatory paradigm, J. Am. Geriatr. Soc., 2002, 50, 2041–2056 http://dx.doi.org/10.1046/j.1532-5415.2002.50619.xCrossrefGoogle Scholar

  • [22] Myint A.M., Leonard B.E., Steinbusch H.W., Kim Y.K., Th1, Th2, and Th3 cytokine alterations in major depression, J. Affect.Disord., 2005, 88, 167–173 http://dx.doi.org/10.1016/j.jad.2005.07.008Google Scholar

  • [23] Coelho F.M., Reis H.J., Nicolato R., Romano-Silva, M.A., Teixeira, M.M., Bauer M.E., et al., Increased serum levels of inflammatory markers in chronic institutionalized patients with schizophrenia, Neuroimmunomodulation, 2008, 15, 140–144 Google Scholar

  • [24] Kim Y.K., Myint A.M., Verkerk R., Scharpe S., Steinbusch H., Leonard B., Cytokine changes and tryptophan metabolites in medication naive and medication free schizophrenic patients, Neuropsychobiology, 2009, 59, 123–129 http://dx.doi.org/10.1159/000213565CrossrefGoogle Scholar

  • [25] Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E. K., et al., A meta-analysis of cytokines in major depression, Biol. Psychiatry, 2010, 67, 446–457 http://dx.doi.org/10.1016/j.biopsych.2009.09.033CrossrefGoogle Scholar

  • [26] Dantzer R., Cytokine-induced sickness behaviour: A neuroimmune response to activation of innate immunity, Eur. J. Pharmacol. 2004, 500, 399–411 http://dx.doi.org/10.1016/j.ejphar.2004.07.040CrossrefGoogle Scholar

  • [27] Cunningham C., Campion S., Lunnon K., Murray C.L., Woods J.F.C., Deacon R.M.J., Systemic inflammation induces acute behavioural and cognitive changes and accelerates neurodegenerative disease, Biol. Psychiatry., 2009, 65, 304–312 http://dx.doi.org/10.1016/j.biopsych.2008.07.024CrossrefGoogle Scholar

  • [28] Levine J., Barak Y., Chengappa K.N., Rapoport A., Rebey M., Barak V., Cerebrospinal cytokine levels in patients with acute depression, Neuropsychobiology, 1999, 40, 71–76 http://dx.doi.org/10.1159/000026615CrossrefGoogle Scholar

  • [29] Garver D.L., Tamas R.L., Holcomb J.A., Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype, Neuropsychopharmacology, 2003, 28, 1515–1520 http://dx.doi.org/10.1038/sj.npp.1300217CrossrefGoogle Scholar

  • [30] Soderlund J., Schroder J., Nordin C., Samuelsson M., Walther-Jallow L., Karlsson H., et al., Activation of brain interleukin-1b in schizophrenia, Mol. Psychiatry, 2009, 14, 1069–1071 http://dx.doi.org/10.1038/mp.2009.52CrossrefGoogle Scholar

  • [31] Perry V.H., The influence of systemic inflammation on inflammation in the brain:implications for chronic neurodegenerative disease, Brain Behav. Immun., 2004, 18, 407–413 http://dx.doi.org/10.1016/j.bbi.2004.01.004CrossrefGoogle Scholar

  • [32] Opal S.M., DePalo V.A., Anti-inflammatory cytokines, Chest, 2000, 117, 1162–1172 http://dx.doi.org/10.1378/chest.117.4.1162CrossrefGoogle Scholar

  • [33] Kim Y.K., Jung H.G., Myint A.M., Kim H., Park S.H., Imbalance between pro-inflammatory and anti-inflmmatory cytokines in bipolar disorder, J. Affect.Disord., 2007, 104, 91–95 http://dx.doi.org/10.1016/j.jad.2007.02.018CrossrefGoogle Scholar

  • [34] Song C., Halbreich U., Han C., Leonard B.E., Luo H., Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electro acupuncture or fluoxetine treatment, Pharmacopsychiatry, 2009, 42, 182–188 http://dx.doi.org/10.1055/s-0029-1202263CrossrefGoogle Scholar

  • [35] Schnabel R.B., Lunetta K.L., Larson M.G., Dupuis J., Lipinska I., Rong J., et al., The relation of genetic and environmental factors to systemic inflammatory biomarkers concentrations, Circ. Cardiovasc. Genet., 2009, 2, 229–237 http://dx.doi.org/10.1161/CIRCGENETICS.108.804245CrossrefGoogle Scholar

  • [36] Bennermo M., Held C., Stemme S., Ericsson C.G., Silveira A., Green F., et al., Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin. Chem., 2004, 50, 2136–2140 http://dx.doi.org/10.1373/clinchem.2004.037531CrossrefGoogle Scholar

  • [37] Boin F., Zanardini R., Pioli R., Altamura C.A., Maes M., Gennarelli M., Association of -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia, Mol. Psychiatry, 2001, 6, 79–82 http://dx.doi.org/10.1038/sj.mp.4000815CrossrefGoogle Scholar

  • [38] Akanji A.O., Ohaeri J.U., Al-Shammri S., Fatania H.R., Association of blood levels of C-reactive protein with clinical phenotypes in Arab schizophrenic patients, Psychiatry Res., 2009, 169, 56–61 http://dx.doi.org/10.1016/j.psychres.2008.06.010CrossrefGoogle Scholar

  • [39] Dickerson F., Stallings C., Origoni A., Boronow J., Yolken R., Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007a, 31, 952–955 http://dx.doi.org/10.1016/j.pnpbp.2007.02.018CrossrefGoogle Scholar

  • [40] Howren M.B., Lamkin D.M., Suls J., Association of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis, Psychosom. Med., 2009, 71, 171–86 http://dx.doi.org/10.1097/PSY.0b013e3181907c1bCrossrefGoogle Scholar

  • [41] Yang Y., Wan C., Li H., Zhu H., La Y., Xi Z., et al., Altered levels of acute phase proteins in the plasma of patients with schizophrenia, Anal. Chem., 2006, 78, 3571–3576 http://dx.doi.org/10.1021/ac051916xCrossrefGoogle Scholar

  • [42] Morera A.L., Henry M., Garcia-Hernandez A., Fernandez-Lopez L., Actute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia, Actas Esp. Psiquiatr., 2007, 35, 249–252 Google Scholar

  • [43] Chittiprol S., Venkatasubramanian G., Neelakantacharan N., Reddy N.A., Shetty K.T., Gangadhar B.N., Longitudinal study of beta-2-microglobulin abnormalities in schizophrenia, Int. Immunopharmacol., 2009, 9, 1215–1217 http://dx.doi.org/10.1016/j.intimp.2009.07.002CrossrefGoogle Scholar

  • [44] Brietzke E., Kauer-Sant’Anna M., Teixeira A.L., Kapczinski F., Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder, Brain Behav. Immun., 2009, 23, 1079–1082 http://dx.doi.org/10.1016/j.bbi.2009.04.008CrossrefGoogle Scholar

  • [45] Teixeria A.L., Resi H.J., Nicolato R., Brito-Melo G., Correa H., Teixeria M.M., et al., Increased serum levels of CCL11/eotaxin in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32, 710–714 http://dx.doi.org/10.1016/j.pnpbp.2007.11.019CrossrefGoogle Scholar

  • [46] Simon N.M., McNamara K., Chow C.W., Maser R.S., Papakostas G.I., Pollack M.H., et al., A detailed examination of cytokine abnormalities in major depressive disorder, Eur. Neuropsychopharmacol., 2008, 18, 230–233 http://dx.doi.org/10.1016/j.euroneuro.2007.06.004CrossrefGoogle Scholar

  • [47] Theodoropoulou S., Spanakos G., Baxevanis C.N., Economou M., Gritzapis A.D., Papamichail M.P., Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients, Schizophr. Res., 2001, 47, 13–25 http://dx.doi.org/10.1016/S0920-9964(00)00007-4CrossrefGoogle Scholar

  • [48] O’Brien S.M., Scully P., Scott L.V., Dinan T.G., Cytokine profile in bipolar affective disorder: focus on acutely ill patients, J. Affect.Disord., 2006, 90, 263–267 http://dx.doi.org/10.1016/j.jad.2005.11.015CrossrefGoogle Scholar

  • [49] Yang K., Xie G., Zhang Z., Wang C., Li W., Zhou W., et al., Levels of serum interleukin (IL)-6, IL-1beta, tumor necrosis factor-alpha and leptin and their correlation in depression, Aust. N Z J. Psychiatry, 2007, 41, 266–273 http://dx.doi.org/10.1080/00048670601057759CrossrefGoogle Scholar

  • [50] Kim Y.K., Myint A.M., Lee B.H., Han C.S., Lee H.J., Kim D.J., et al., Th1, Th2 and Th3 cytokine alteration in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004a, 28, 1129–1134 http://dx.doi.org/10.1016/j.pnpbp.2004.05.047CrossrefGoogle Scholar

  • [51] Kim Y.K., Myint A.M., Lee B.H., Han C.S., Lee S.W., Leonard B.E., et al., T-helper types 1, 2, and 3 cytokine interactions in symptomatic manic patients, Psychiatry Res., 2004b, 129, 267–272 http://dx.doi.org/10.1016/j.psychres.2004.08.005CrossrefGoogle Scholar

  • [52] Schmitt A., Bertsch T., Tost H., Bergmann A., Henning U., Klimke A., et al., Increased serum interleukin-1β and interleukin-6 in elderly, chronic schizophrenic patients on stable antipsychotic medication, Neuropsychiatr. Dis. Treat., 2005, 1, 171–177 http://dx.doi.org/10.2147/nedt. Scholar

  • [53] Ebrinc S., Top C., Oncul O., Basoglu C., Cavuslu S., Cetin M., Serum interleukin 1 alpha and interleukin 2 levels in patients with schizophrenia, J. Int. Med. Res., 2002, 30, 314–317 Google Scholar

  • [54] Ortiz-Dominguez A., Hernandez M.E., Berlanga C., Gutierrez-Mora D., Moreno J., Heinze G., et al., Immune variations in bipolar disorder: phasic differences, Bipolar Disord., 2007, 9, 596–602 http://dx.doi.org/10.1111/j.1399-5618.2007.00493.xCrossrefGoogle Scholar

  • [55] Maes M., Chiavetto L.B., Bignotti S., Tura G.J.B., Pioli R., Boin F., et al., Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and stimulatory effects of clozapine on serum leukemia inhibitory factor receptor, Schizophr. Res., 2002, 54, 281–291 http://dx.doi.org/10.1016/S0920-9964(00)00094-3CrossrefGoogle Scholar

  • [56] Kim Y.K., Suh I.B., Kim H., Han C.S., Lim C.S., Choi S.H., et al., The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs, Mol. Psychiatry, 2002, 7, 1107–1114 http://dx.doi.org/10.1038/sj.mp.4001084CrossrefGoogle Scholar

  • [57] Tanaka K.F., Shintani F., Fujii Y., Yagi G., Asai M., Serum interleukin-18 levels are elevated in schizophrenia, Psychiatry Res., 2000, 96, 75–80 http://dx.doi.org/10.1016/S0165-1781(00)00196-7CrossrefGoogle Scholar

  • [58] Bresee C., Rapaport M.H., Persistently increased serum soluble interleukin-2 receptors in continuously ill patients with schizophrenia, Int. J. Neuropsychopharmacol., 2009, 12, 861–865 http://dx.doi.org/10.1017/S1461145709000315Google Scholar

  • [59] Maes M., Meltzer H.Y., Bosmans E., Bergmans R., Vandoolaeghe E., Ranjan R., et al., Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin -2 and transferrin in major depression, J. Affect. Disord., 1995a, 34, 301–309 http://dx.doi.org/10.1016/0165-0327(95)00028-LCrossrefGoogle Scholar

  • [60] Hope S., Melle I., Aukrust P, Steen N.E., Birkenaes A.B., Lorentzen S., et al., Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor, Bipolar Disord., 2009, 11, 726–734 http://dx.doi.org/10.1111/j.1399-5618.2009.00757.xCrossrefGoogle Scholar

  • [61] Vaccarino V., Brennan M.L., Miller A.H., Bremner J.D., Ritchie J.C., Lindau F., et al., Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: a twin study, Biol. Psychiatry, 2008, 64, 476–483 http://dx.doi.org/10.1016/j.biopsych.2008.04.023CrossrefGoogle Scholar

  • [62] Papiol S., Rosa A., Gutierrez B., Martin B., Salgado P., Catalan R., et al., Interleukin-1 cluster is associated with genetic risk for schizophrenia and bipolar disorder, J. Med. Genet., 2004, 41, 219–223 http://dx.doi.org/10.1136/jmg.2003.012914CrossrefGoogle Scholar

  • [63] Hanninen K., Katila H., Saarela M., Rontu R., Mattila K.M., Fan M., et al., Interleukin-1 beta gene polymorphism and its interactions with neuregulin-1 gene polymorphism are associated with schizophrenia, Eur. Arch. Psychiatry Clin.Neurosci., 2008, 258, 10–15 http://dx.doi.org/10.1007/s00406-007-0756-9Google Scholar

  • [64] Schwarz M.J., Kronig H., Riedel M., Dehning S., Douhet A., Spellman I., et al., IL-2 and IL-4 polymorphisms as candidate genes in schizophrenia, Eur. Arch. Psychiatry Clin.Neurosci., 2006, 256, 72–76 http://dx.doi.org/10.1007/s00406-005-0603-9CrossrefGoogle Scholar

  • [65] Chen X., Kendler K.S., Interleukin 3 and Schizophrenia, Am. J. Psychiat., 2008, 165, 13–14 http://dx.doi.org/10.1176/appi.ajp.2007.07121868CrossrefGoogle Scholar

  • [66] Sun S., Wei J., Li H., Jin S., Li P., Ju G., et al., A family based study of IL3RA gene on susceptibility to schizophrenia in a Chinese Han population, Brain Res., 2009, 1268, 13–16 http://dx.doi.org/10.1016/j.brainres.2009.02.071CrossrefGoogle Scholar

  • [67] Paul-Samojedny M., Kowalczyk M., Suchanek R., Owczarek A., Fila-Danilow A., Szczygiel A., et al., Functional polymorphism in the interleukin -6 and interleukin -10 genes in patients with paranoid schizophrenia — a case control study, J. Mol. Neurosci., 2010, 42, 112–119 http://dx.doi.org/10.1007/s12031-010-9365-6CrossrefGoogle Scholar

  • [68] Sun S., Wang F., Wei J., Cao L.Y., Qi L.Y., Xiu M.H., et al., Association between interleukin-6 receptor polymorphism and patients with schizophrenia, Schizophr. Res., 2008, 102, 346–347 http://dx.doi.org/10.1016/j.schres.2008.04.018CrossrefGoogle Scholar

  • [69] Shirts B.H., Wood J., Yolken R.H., Nimgaonkar V.L., Comprehensive evaluation of positional candidates in the IL-18 pathway reveals suggestive associations with schizophrenia and herpes virus seropositivity, Am. J. Med. Genet. Part B (Neuropsychiatric Genetics), 2008, 147B, 343–350 http://dx.doi.org/10.1002/ajmg.b.30603CrossrefGoogle Scholar

  • [70] Galecki P., Florkowski A., Bobinska K., Smigielski J., Bienkiewicz M., Szemraj J., Functional polymorphism of the myeloperoxidase gene (G-463A) in depressive patients, Acta Neuropsychiatrica., 2010, 22, 218–222 http://dx.doi.org/10.1111/j.1601-5215.2010.00483.xCrossrefGoogle Scholar

  • [71] Lee H.Y., Kim Y.K., Effect of TGF-β1 polymorphism on the susceptibility and treatment response of atypical antipsychotic agent, Acta Neuropsychiatrica, 2010a, 22, 174–179 http://dx.doi.org/10.1111/j.1601-5215.2009.00435.xCrossrefGoogle Scholar

  • [72] Czerski P. M., Rybakowski F., Kapelski P., Rybakowski J.K., Dmitrzak-Weglarz M., Leszczynska-Rodziewicz A., et al., Association of tumor necrosis factor-308G/A promoter polymorphism with schizophrenia and bipolar affective disorder in a Polish population, Neuropsychobiology, 2008, 57, 88–94 http://dx.doi.org/10.1159/000135642CrossrefGoogle Scholar

  • [73] Cerri A.P., Arosio B., Viazzoli C., Confalonieri R., Vergani C., Annoni G., The-308 (G/A) single nucleotide polymorphism in the TNF-α gene and risk of major depression in the elderly, Int. J. Geriatr. Psychiatry, 2010, 25, 219–223 http://dx.doi.org/10.1002/gps.2323CrossrefGoogle Scholar

  • [74] Dickerson F., Boronow J., Stallings C., Origoni A., Yolken R., The lymphotoxin Cys13Arg polymorphism and cognitive functioning in individuals with schizophrenia, Schizophr. Res., 2007b, 89, 173–176 http://dx.doi.org/10.1016/j.schres.2006.08.015CrossrefGoogle Scholar

  • [75] Paul-Samojedny M., Owczarek A., Suchanek R., Kowalczyk M., Fila-Danilow A., Borkowska P., et al., Association study of interferon gamma (IFN-γ) +874T/A gene polymorphism in patients with paranoid schizophrenia, J. Mol. Neurosci., 2011, 43, 309–315 http://dx.doi.org/10.1007/s12031-010-9442-xCrossrefGoogle Scholar

  • [76] Chen, P., Huang, K., Zhou, G., Zeng, Z., Wang, T., Li, B. et al., Common SNPs in CSF2RB are associated with major depression and schizophrenia in the Chinese Han population, World J. Biol. Psychiatry, 2011, 12, 233–238 http://dx.doi.org/10.3109/15622975.2010.544328CrossrefGoogle Scholar

  • [77] Altamura A.C., Mundo E., Cattaneo E., Pozzoli S., Dell’osso B., Gennarelli M., et al., MCP-1 gene (SCYA2) and mood disorders: preliminary results of a case-control association study, Neuroimmunomodulation, 2010, 17, 126–131 http://dx.doi.org/10.1159/000258696CrossrefGoogle Scholar

  • [78] Ohi K., Hashimoto R., Yasuda Y., Yoshida T., Takahashi H., Iike N., et al., The chitinase 3 like gene and schizophrenia: evidence from a multicentre case-control study and meta-analysis, Schizophr. Res., 2010, 116, 126–132 http://dx.doi.org/10.1016/j.schres.2009.12.002CrossrefGoogle Scholar

  • [79] Okahisa Y., Ujike H., Kunugi H., Ishihara T., Kodama M., Takaki M., et al., Leukemia inhibitory factor gene is associated with schizophrenia and working memory function, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34, 172–176 http://dx.doi.org/10.1016/j.pnpbp.2009.10.020CrossrefGoogle Scholar

  • [80] Rasmussen H.B., Timm S., Wang A.G., Soeby K., Lublin H., Fenger M., et al., Association between the CCR5 32-bp deletion allele and late onset of schizophrenia, Am. J. Psychiat., 2006, 163, 507–511 http://dx.doi.org/10.1176/appi.ajp.163.3.507CrossrefGoogle Scholar

  • [81] Wan C., La Y., Zhu H., Yang Y., Jiang L., Chen Y., et al., Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene, Amino Acids, 2007, 32, 101–108 http://dx.doi.org/10.1007/s00726-005-0292-8CrossrefGoogle Scholar

  • [82] Liu L., Jia F., Yuan G., Chen Z., Yao J., Li H., et al., Tyrosine hydroxylase, interleukin-1 beta and tumor necrosis factor-alpha are over expressed in peripheral blood mononuclear cells from schizophrenia patients as determined by semi-quantitative analysis, Psychiatry Res., 2010, 176, 1–7 http://dx.doi.org/10.1016/j.psychres.2008.10.024CrossrefGoogle Scholar

  • [83] Padmos R.C., Hillegers M.H., Knijff E.M., Vonk R., Bouvy A., Staal F.J., et al., A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes, Arch. Gen. Psychiatry, 2008, 65, 395–407 http://dx.doi.org/10.1001/archpsyc.65.4.395CrossrefGoogle Scholar

  • [84] Drexhage R.C., van der Heul-Nieuwenhuijsen L., Padmos R.C., van Beveren N., Cohen D., Versnel M.A., et al., Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturalistically treated patients, Int. J. Neuropsychopharmacol., 2010, 15, 1–13 Google Scholar

  • [85] Konsman J. P., Parnet P., Dantzer R., Cytokine-induced sickness behaviour: mechanisms and implications, Trends Neurosci., 2002, 25, 154–159 http://dx.doi.org/10.1016/S0166-2236(00)02088-9CrossrefGoogle Scholar

  • [86] Vitkovic L., Bockaert J., Jacque C., ’Inflammatory’ cytokines: neuromodulators in normal brain? J. Neurochem., 2000, 74, 457–471 http://dx.doi.org/10.1046/j.1471-4159.2000.740457.xCrossrefGoogle Scholar

  • [87] Licinio J., Wong M.L., Pathways and mechanisms for cytokine signalling of the central nervous system, J. Clin.Investigat., 1997, 100, 2941–2947 http://dx.doi.org/10.1172/JCI119846CrossrefGoogle Scholar

  • [88] Banks W. A., The blood-brain barrier in psychoneuroimmunology, Neurol. Clin., 2006, 24, 413–419 http://dx.doi.org/10.1016/j.ncl.2006.03.009CrossrefGoogle Scholar

  • [89] Goehler L.E., Gaykema R.P.A., Nguyen K.T., Lee J.E., Tiiders F.J.H., Maier S.F., et al., Interleukin-1b in immune cells of the abdominal vagus nerve: a link between the immune and nervous system, J. Neurosci., 1999, 19, 2799–2806 Google Scholar

  • [90] Khairova R., Machado-Viera R., Du J., Manji H.K., A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder, Int. J. Neuropsychopharmacol., 2009, 12, 561–578 http://dx.doi.org/10.1017/S1461145709009924CrossrefGoogle Scholar

  • [91] Abbott N.J., Ronnback L., Hansson. E., Astrocyte endothelial interactions at the blood-brain barrier, Nat. Rev. Neurosci., 2006, 7, 41–53 http://dx.doi.org/10.1038/nrn1824CrossrefGoogle Scholar

  • [92] Stolp H.B., Johansson P.A., Habgood M.D., Dziegielewska K.M., Saunders N.R., Ek C.J., Effects of neonatal systemic inflammation on blood brain barrier permeability and behaviour in juvenile and adult rats, Cardiovasc. Psychiatry Neurol., 2011, Article ID 469046, 10 pages, Doi:10.1155/2011/469046 CrossrefGoogle Scholar

  • [93] Muller N., Ackenheil M., Immunoglobulin and albumin content of cerebrospinal fluid in schizophrenic patients: relationship to negative symptomatology, Schizophr. Res., 1995, 14, 223–228 http://dx.doi.org/10.1016/0920-9964(94)00045-ACrossrefGoogle Scholar

  • [94] Schwarz M.J., Ackenheil M., Riedel M., Muller N., Blood-cerebrospinal fluid barrier impairment as indicator for an immune process in schizophrenia, Neurosci. Lett., 1998, 253, 201–203 http://dx.doi.org/10.1016/S0304-3940(98)00655-7CrossrefGoogle Scholar

  • [95] Thomas A.J., O’Brien J.T., Davis S., Ballard C., Barber R., Kalaria R.N., et al., Ischemic basis for deep white matter hyperintensities in major depression, Arch. Gen. Psychiatry, 2002, 59, 785–792 http://dx.doi.org/10.1001/archpsyc.59.9.785CrossrefGoogle Scholar

  • [96] Harris L.W., Wayland M., Lan M., Ryan M., Giger T., Lockstone H., et al., The cerebral microvasculature in schizophrenia: a Laser capture microdissection study, PLoS ONE, 2008, 3, e3964 http://dx.doi.org/10.1371/journal.pone.0003964CrossrefGoogle Scholar

  • [97] Hanson D.R., Gottesman I.I., Theories of schizophrenia: a genetic-inflammatory-vascular synthesis, BMC Med. Genet., 2005, 6, 7 http://dx.doi.org/10.1186/1471-2350-6-7CrossrefGoogle Scholar

  • [98] Fleminger S., Long-term psychiatric disorders after traumatic brain injury, Eur. J. Anaesthesiol., 2008, 25(suppl 42), 123–130 http://dx.doi.org/10.1017/S0265021507003250CrossrefGoogle Scholar

  • [99] Guerreiro D.F., Navarro R., Silva M., Carvalho M., Gois C., Psychosis secondary to traumatic brain injury, Brain Injury, 2009, 23, 358–361 http://dx.doi.org/10.1080/02699050902800918CrossrefGoogle Scholar

  • [100] Shalev H., Serlin Y., Friedman A., Breaching the blood-brain barrier as a gate to psychiatric disorder, Cardiovasc. Psychiatry Neurol., 2009, Article ID 278531, 7 pages, Doi:10.1155/2009/278531 CrossrefGoogle Scholar

  • [101] Carson M.J., Doose J.M., Melchior B., Schmid C.D., Ploix C.C., CNS immune privilege: hiding in plain sight, Immunol. Rev., 2006, 213, 48–65 http://dx.doi.org/10.1111/j.1600-065X.2006.00441.xCrossrefGoogle Scholar

  • [102] Conti B., Tabarean I., Sanchez-Alavez M., Davis C., Brownell S., Behrens M., et al., Cytokine receptors in the brain, Neuroimmune Biology, 2008, 6, 21–38 http://dx.doi.org/10.1016/S1567-7443(07)10002-8CrossrefGoogle Scholar

  • [103] Camacho-Arroyo I., Lopez-Griego L., Morales-Montor J., The role of cytokines in the regulation of neurotransmission, Neuroimmunomodulation, 2009, 16, 1–12 http://dx.doi.org/10.1159/000179661CrossrefGoogle Scholar

  • [104] Bauer S., Kerr B.J., Patterson P.H., The neuropoietic cytokine family in development, plasticity, disease and injury, Nat. Rev. Neurosci., 2007, 8, 221–232 http://dx.doi.org/10.1038/nrn2054CrossrefGoogle Scholar

  • [105] Freidin M., Bennett M.V.L., Kessler J.A., Cultured sympathetic neurons synthesize and release the cytokine interleukin-1β, Proc. Natl. Acad. Sci. USA, 1992, 89, 10440–10443 http://dx.doi.org/10.1073/pnas.89.21.10440CrossrefGoogle Scholar

  • [106] Licinio L., Kling M., Hauser P., Cytokines and brain function: relevance of interferon α-induced mood and cognitive changes, Semin. Oncol., 1998, 25, 30–38 Google Scholar

  • [107] Grilli M., Memo M., Nuclear factor kappa B/Rel proteins: a point of convergence of signaling pathways relevant to neural function and dysfunction, Biochem. Pharmacol., 1999, 57, 1–7 http://dx.doi.org/10.1016/S0006-2952(98)00214-7CrossrefGoogle Scholar

  • [108] Du J., Creson T.K., Wu L-J., Ren M., Gray N.A., Falke C., et al., The role of hippocampal GluR1 and GLUR2 receptors in manic-like behavior, J. Neurosci., 2008, 28, 68–79 http://dx.doi.org/10.1523/JNEUROSCI.3080-07.2008CrossrefGoogle Scholar

  • [109] Chavarria A., Alcocer-Varela J., Is damage in central nervous system due to inflammation? Autoimmun. Rev., 2004, 3, 251–260 http://dx.doi.org/10.1016/j.autrev.2003.09.006CrossrefGoogle Scholar

  • [110] Vezzani A., Ravizza T., Balosso S., Aronica E., Glia as a source of cytokines: implications for neuronal excitability and survival, Epilepsia, 2008, 49, 24–32 http://dx.doi.org/10.1111/j.1528-1167.2008.01490.xCrossrefGoogle Scholar

  • [111] McAllister C.G., van Kammen D.P., Rehn T.J., Miller A.L., Gurklis J., Helley M.E., et al., Increases in CSF levels of interleukin-2 in schizophrenia:effects of recurrence of psychosis and medication status, Am. J. Psychiat., 1995, 152, 1291–1297 Google Scholar

  • [112] Mittleman B.B., Castellanos F.X., Jacobsen L.K., Rapoport J.L., Swedo S.E., Shearer G.M., Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease, J. Immunol., 1997, 159, 2994–2999 Google Scholar

  • [113] Soderlund J., Olsson S.K., Samuelsson M., Walther-Jallow L., Johansson C., Erhardt S., et al., Elevation of cerebrospinal fluid interleukin -1β in bipolar disorder, J. Psychiatry Neurosci., 2011, 36, 114–118 CrossrefGoogle Scholar

  • [114] Rao J.S., Harry G.J., Rapoport S.I., Kim H.W., Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients, Mol. Psychiatry, 2010, 15, 384–392 http://dx.doi.org/10.1038/mp.2009.47CrossrefGoogle Scholar

  • [115] Saetre P., Emilson L., Axelsson E., Kreuger J., Lindholm E., Jazin E., Inflammation-related genes up-regulated in schizophrenia, BMC Psychiatry, 7, 46 Google Scholar

  • [116] Schmitt A., Leonardi-Essmann F., Durrenberger P.F., Parlapani E., Schneider-Axmann T., Spanagel R. et al., Regulation of immunemodulatory genes in left superior temporal cortex of schizophrenia patients, World J. Biol. Psychiatry, (in press), Doi:10.3109/15622975. 2010.530690 CrossrefGoogle Scholar

  • [117] Doorduin J., de Vries E.F.J., Willemsen A.T.M., de Groot J.C., Dierckx R.A., Klein H.C., Neuroinflammation in schizophrenia-related psychosis: A PET Study, J. Nucl. Med., 2009, 50, 1801–1807 http://dx.doi.org/10.2967/jnumed.109.066647CrossrefGoogle Scholar

  • [118] Kendler K.S., Thornton L.M., Gardner C.O., Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “Kindling” hypothesis, Am. J. Psychiat., 2000, 157, 1243–1251 http://dx.doi.org/10.1176/appi.ajp.157.8.1243CrossrefGoogle Scholar

  • [119] Goebel M.U., Mills P.J., Irwin M.R., Ziegler M.G., Interleukin-6 and tumor necrosis factor-α production after acute psychological stress, exercise, and infused isoproterenol: differential effects and pathways, Psychosom. Med., 2000, 62, 591–598 CrossrefGoogle Scholar

  • [120] Madrigal J.L., Hurtado O., Moro M.A., Lizasoain I., Lorenzo P., Castrillo A., et al., The increase in TNF-alpha levels is implicated in NF-kappaB activation and inducible nitric oxide synthase expression in brain cortex after immobilization stress, Neuropsychopharmacol., 2002, 26, 155–163 http://dx.doi.org/10.1016/S0893-133X(01)00292-5CrossrefGoogle Scholar

  • [121] O’Connor K.A., Johnson J.D., Hansen M.K., Wieseler Frank J.L., Maksimova E., Watkins L.R., et al., Peripheral and central proinflammatory cytokine response to a severe acute stressor, Brain Res., 2003, 991, 123–132 http://dx.doi.org/10.1016/j.brainres.2003.08.006CrossrefGoogle Scholar

  • [122] Pace T.W., Mletzko T.C., Alagbe O., Musselman D.L., Nemeroff C.B., Miller A.H., et al., Increased stress induced inflammatory responses in male patients with major depression and increased early life stress, Am. J. Psychiat., 2006, 163, 1630–1633 http://dx.doi.org/10.1176/appi.ajp.163.9.1630CrossrefGoogle Scholar

  • [123] Hardingham G.E., Fukunaga Y., Bading H., Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways, Nat. Neurosci., 2002, 5, 405–414 Google Scholar

  • [124] Kendler K.S., Karkowski L.M., Prescott C.A., Causal relationship between stressful life events and the onset of major depression, Am. J. Psychiat., 1999, 156, 837–841 CrossrefGoogle Scholar

  • [125] Joels M., Karst H., Alfarez D., Heine V.M., Qin Y., van Riel E., et al., Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus, Stress, 2004, 7, 221–231 http://dx.doi.org/10.1080/10253890500070005CrossrefGoogle Scholar

  • [126] Akhtar R.S., Ness J.M., Roth K.A., Bcl-2 family regulation of neuronal development and neurodegeneration, Biochimica et Biophysica Acta, 2004, 1644, 189–203 http://dx.doi.org/10.1016/j.bbamcr.2003.10.013CrossrefGoogle Scholar

  • [127] Shi Y., Mechanisms of caspase activation and inhibition during apoptosis, Mol. Cell, 2002, 9, 459–470 http://dx.doi.org/10.1016/S1097-2765(02)00482-3CrossrefGoogle Scholar

  • [128] Yeretssian G., Labbe K., Saleh M., Molecular regulation of inflammation and cell death, Cytokines, 2008, 43, 380–390 http://dx.doi.org/10.1016/j.cyto.2008.07.015CrossrefGoogle Scholar

  • [129] Li P., Nijhawan D., Budihardjo I., Srinivassula S.M., Alnemri E.S., Wang X., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptic protease cascade, Cell, 1997, 91, 479–489 http://dx.doi.org/10.1016/S0092-8674(00)80434-1CrossrefGoogle Scholar

  • [130] Hengartner M.O., The Biochemistry of Apoptosis, Nature, 2000, 407, 770–776 http://dx.doi.org/10.1038/35037710CrossrefGoogle Scholar

  • [131] Earnshaw W.C., Martins L.M., Kaufmann S.H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis, Annu. Rev. Biochem., 1999, 68, 383–424 http://dx.doi.org/10.1146/annurev.biochem.68.1.383CrossrefGoogle Scholar

  • [132] Mogi M., Togari A., Kondo T., Mizuno Y., Komure O., Kuno S., et al., Caspase activities and tumor necrosis factor receptor R1 level are elevated in the substantia nigra from parkinsonian brain, J. Neural Transm., 2000, 107, 335–341 http://dx.doi.org/10.1007/s007020050028CrossrefGoogle Scholar

  • [133] Takeuchi H., Jin S., Wang J., Zhang G., Kawanokuchi J., Kuno R., et al., Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner, J. Biol. Chem., 2006, 281, 21362–21368 http://dx.doi.org/10.1074/jbc.M600504200CrossrefGoogle Scholar

  • [134] Chen D.F., Schneider G.E., Martinou J.C., Tonegawa S., Bcl-2 promotes regeneration of several axons in mammalian CNS, Nature, 1997, 385, 434–439 http://dx.doi.org/10.1038/385434a0CrossrefGoogle Scholar

  • [135] Salvadore G., Nugent A.C., Chen G., Akula N., Yuan P., Cannon D.M., et al., Bcl-2 polymorphism influences gray matter volume in the ventral striatum in healthy humans, Biol. Psychiatry, 2009, 66, 804–807. Erratum in: Biol. Psychiatry, 2009, 66, 808 http://dx.doi.org/10.1016/j.biopsych.2009.05.025CrossrefGoogle Scholar

  • [136] Manji H.K., Moore G.J., Chen G. Lithium up-regulates the cytoprotective protein bcl-2 in vitro and in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness, J. Clin. Psychiatry, 2000, 61(suppl 9), 82–96 Google Scholar

  • [137] Kosten T.A., Galloway M.P., Duman R.S., Russell D.S., D’sa C., Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures, Neuropsychopharmacol., 2008, 33, 1545–1558 http://dx.doi.org/10.1038/sj.npp.1301527Google Scholar

  • [138] Takayama S., Sato T., Krajewski S., Kochel K., Irie S., Millan J.A., et al., Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity, Cell 1995, 80, 279–284 http://dx.doi.org/10.1016/0092-8674(95)90410-7CrossrefGoogle Scholar

  • [139] Silva R., Mesquita A.R., Bessa J., Sousa J.C., Sotiropoulos I., Leao P., et al. Lithium blocks stress induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthasekinase-3 beta, Neuroscience, 2008, 152, 656–669 http://dx.doi.org/10.1016/j.neuroscience.2007.12.026Google Scholar

  • [140] Maes M., Evidence for an immune response in major depression: a review and hypothesis, Prog. Neuropsychopharmacol. Biol. Psychiatry, 1995b, 19, 11–38 http://dx.doi.org/10.1016/0278-5846(94)00101-MCrossrefGoogle Scholar

  • [141] Czeh B., Lucassen P.J., What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur. Arch. Psychiatry Clin. Neurosci., 2007, 257, 250–260 http://dx.doi.org/10.1007/s00406-007-0728-0CrossrefGoogle Scholar

  • [142] Hornsby, C.D., Grootendorst, J., de Kloet, E.R., Dexamethasone does not prevent seven-day ADX-induced apoptosis in the dentate gyrus of the rat hippocampus, Stress, 1996, 1, 51–64 http://dx.doi.org/10.3109/10253899609001095CrossrefGoogle Scholar

  • [143] Pariante C.M., Lightman S.L., The HPA axis in major depression: classical theories and new developments, Trends Neurosci., 2008, 31, 464–468 http://dx.doi.org/10.1016/j.tins.2008.06.006CrossrefGoogle Scholar

  • [144] Besedovsky H.O., Del Rey A., Klusman I., Furukawa H., Arditi G.M., Kabiersch A., Cytokines as modulators of the hypothalamus-pituitary-adrenal axis, J. Steroid Biochem. Mol. Biol., 1991, 40, 613–618 http://dx.doi.org/10.1016/0960-0760(91)90284-CCrossrefGoogle Scholar

  • [145] Pariante C.M., Miller A.M., Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment, Biol. Psychiatry, 2001, 49, 391–404 http://dx.doi.org/10.1016/S0006-3223(00)01088-XCrossrefGoogle Scholar

  • [146] Pace T.W., Hu F., Miller A.H., Cytokine-effects on glucocorticoid receptor function: relevance to glucocortoid resistance and the pathophysiology and treatment of major depression, Brain Behav. Immun., 2007, 21, 9–19 http://dx.doi.org/10.1016/j.bbi.2006.08.009CrossrefGoogle Scholar

  • [147] Nemeroff C.B., Vale W.W., The neurobiology of depression: inroads to treatment and new drug discovery, J. Clin. Psychiatry, 2005, 66, 5–13 http://dx.doi.org/10.4088/JCP.v66n0101CrossrefGoogle Scholar

  • [148] Raison C.L., Capuron L., Miller A.H., Cytokines sing the blues: inflammation and the pathogenesis of depression, Trends Immunol., 2006, 27, 24–31 http://dx.doi.org/10.1016/j.it.2005.11.006CrossrefGoogle Scholar

  • [149] Irwin M. R., Miller A. H., Depressive disorders and immunity: 20 years of progress and discovery, Brain Behav. Immun., 2007, 21, 374–383 http://dx.doi.org/10.1016/j.bbi.2007.01.010CrossrefGoogle Scholar

  • [150] Vedder H., Schreiber W., Schuld A., Kainz M., Lauer C.J., Krieg J.C., et al., Immune-endocrine host response to endotoxin in major depression, J. Psychiat. Res., 2007, 41, 280–289 http://dx.doi.org/10.1016/j.jpsychires.2006.07.014CrossrefGoogle Scholar

  • [151] Angelucci F., Brene S., Mathe A.A., BDNF in schizophrenia, depression and corresponding animal models, Mol. Psychiatry, 2005, 10, 345–352 http://dx.doi.org/10.1038/sj.mp.4001637CrossrefGoogle Scholar

  • [152] Verhagen M., van der Meij A., van Deurzen P.A., Janzing J.G., Arias-Vasquez A., Buitelaar J.K., et al., Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity, Mol. Psychiatry, 2010, 15, 260–271 http://dx.doi.org/10.1038/mp.2008.109CrossrefGoogle Scholar

  • [153] Neves-Pereira M., Cheung J.K., Pasdar A., Zhang F., Breen G., Yates P., et al., BDNF gene is a risk factor for schizophrenia in a Scottish population, Mol. Psychiatry, 2005, 10, 208–212 http://dx.doi.org/10.1038/sj.mp.4001575CrossrefGoogle Scholar

  • [154] Frodl T., Schule C., Schmitt G., Born C., Baghai T., Zill P., et al., Association of the brain-derived neurotrophic factor val66met polymorphism with reduced hippocampal volumes in major depression, Arch. Gen. Psychiatry, 2007, 64, 410–416 http://dx.doi.org/10.1001/archpsyc.64.4.410CrossrefGoogle Scholar

  • [155] Duman R.S., Monteggia L.M., A neurotrophic model for stress-related mood disorders, Biol. Psychiatry, 2006, 59, 1116–1127 http://dx.doi.org/10.1016/j.biopsych.2006.02.013CrossrefGoogle Scholar

  • [156] Lee B.H., Kim Y.K., The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment, Psychiatry Investig., 2010b, 7, 231–235 http://dx.doi.org/10.4306/pi.2010.7.4.231CrossrefGoogle Scholar

  • [157] Martinowich K., Manji H., Lu B., New insights into BDNF function in depression and anxiety, Nat Neurosci., 2007, 10, 1089–1093 http://dx.doi.org/10.1038/nn1971CrossrefGoogle Scholar

  • [158] Jiang Y., Wei N., Zhu J., Lu T., Chen Z., Xu G., et al., Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat, Mediators Inflamm., 2010, Article ID 372423, 10 pages, Doi:10.1155/2010/372423 CrossrefGoogle Scholar

  • [159] Cortese G.P., Barrientos R.M., Maier S.F., Patterson S.L., Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCγ1, and ERK in hippocampal synaptoneurosomes, J. Neurosci., 2011, 31, 4274–4279 http://dx.doi.org/10.1523/JNEUROSCI.5818-10.2011CrossrefGoogle Scholar

  • [160] Kauer-Sant’Anna M., Kapczinski F., Andreazza A.C., Bond D.J., Lam R.W., Young L.T., et al. Brain-derived neurotrophic factor and inflammatory markers in patients with early-vs. late-stage bipolar disorder, Int. J. Neuropsychopharmacol., 2009, 12, 447–458 http://dx.doi.org/10.1017/S1461145708009310CrossrefGoogle Scholar

  • [161] Castner S.A., Goldman-Rakic P.S., Williams G.V., Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia, Psychopharmacology (Berl)., 2004, 174, 111–125 http://dx.doi.org/10.1007/s00213-003-1710-9Google Scholar

  • [162] Sanacora G., Zarate C.A., Krystal J.H., Manji H.K., Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders, Nat. Rev. Drug Discov., 2008, 7, 426–437 http://dx.doi.org/10.1038/nrd2462CrossrefGoogle Scholar

  • [163] Sodhi M., Wood K.H., Meador-Woodruff J., Role of glutamate in schizophrenia: integrating excitatory avenues of research, Exp. Rev. Neurother., 2008, 8, 1389–1406 http://dx.doi.org/10.1586/14737175.8.9.1389CrossrefGoogle Scholar

  • [164] Goff D.C., Coyle J.T., The emerging role of glutamate in the pathophysiology and treatment of schizophrenia, Am. J. Psychiat., 2001, 158, 1367–1377 http://dx.doi.org/10.1176/appi.ajp.158.9.1367CrossrefGoogle Scholar

  • [165] Muller N., Schwarz M., Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission, Neurotox. Res., 2006, 10, 131–148 http://dx.doi.org/10.1007/BF03033242CrossrefGoogle Scholar

  • [166] Muller N., Schwarz M.J., The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression, Mol. Psychiatry, 2007a, 12, 988–1000 http://dx.doi.org/10.1038/sj.mp.4002006CrossrefGoogle Scholar

  • [167] McNally L., Bhagwagar Z., Hannestad J., Inflammation, glutamate, and glia in depression: a literature review, CNS Spectr., 2008, 13, 501–510 Google Scholar

  • [168] Taylor M.W., Feng G.S., Relationship between interferon gamma, indoleamine 2, 3-dioxygenase, and tryptophan catabolism, FASEB J., 1991, 5, 2516–2522 Google Scholar

  • [169] Pickering M., Cumiskey D., O’Connor J.J., Actions of TNF-α on glutamatergic synaptic transmission in the central nervous system, Exp. Physiol., 2005, 90, 663–670 http://dx.doi.org/10.1113/expphysiol.2005.030734CrossrefGoogle Scholar

  • [170] Fujigaki H., Saito K., Fujigaki S., Takemura M., Sudo K., Ishiguro H., et al., The signal transducer and activator of transcription 1 alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2, 3-dioxygenase by lipopolysaccharide: Involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways, and synergistic effect of several proinflammatory cytokines, J. Biochem., 2006, 139, 655–662 http://dx.doi.org/10.1093/jb/mvj072Google Scholar

  • [171] Myint A.M., Kim Y.K., Cytokine-serotonin interactions through IDO: a neurodegeneration hypothesis of depression, Med. Hypotheses, 2003, 61, 519–525 http://dx.doi.org/10.1016/S0306-9877(03)00207-XCrossrefGoogle Scholar

  • [172] Stone T.W., Neuropharmacology of quinolinic and kynurenic acids, Pharmacol. Rev., 1993, 45, 309–379 Google Scholar

  • [173] Sanacora G., Gueorguieva R., Epperson C.N., Wu Y.T., Appel M., Rothman D.L., et al., Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression, Arch. Gen. Psychiatry, 2004, 61, 705–713 http://dx.doi.org/10.1001/archpsyc.61.7.705CrossrefGoogle Scholar

  • [174] Myint A.M., Kim Y.K., Verkerk R., Scharpe S., Steinbusch H., Leonard B., Kynurenine pathway in major depression: evidence of impaired neuroprotection, J. Affect. Disord., 2007, 98, 143–151 http://dx.doi.org/10.1016/j.jad.2006.07.013CrossrefGoogle Scholar

  • [175] Raison C.L., Dantzer R., Kelley K.W., Lawson M.A., Woolwine B.J., Vogt G., et al., CSF concentrations of brain tryptophan and kynurenines during stimulation with IFN-alpha: relationship to CNS immune responses and depression, Mol. Psychiatry, 2010, 15, 393–403 http://dx.doi.org/10.1038/mp.2009.116CrossrefGoogle Scholar

  • [176] Zarate C.A. Jr., Quiroz J.A., Singh J.B., Denicoff K.D., De Jesus G., Luckenbaugh D.A., et al., An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression, Biol. Psychiatry, 2005, 57, 430–432 http://dx.doi.org/10.1016/j.biopsych.2004.11.023CrossrefGoogle Scholar

  • [177] Krystal J.H., Karper L.P., Seibyl J.P., Freeman G.K., Delaney R., Bremner J.D., et al., Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses, Arch. Gen. Psychiatry, 1994, 51, 199–214 CrossrefGoogle Scholar

  • [178] Kim J.S., Schmid-Burgk W., Claus D., Kornhuber H.H., Increased serum glutamate in depressed patients, Arch. Psychiatr. Nervenkr., 1982, 232, 299–304 http://dx.doi.org/10.1007/BF00345492CrossrefGoogle Scholar

  • [179] Pittenger C., Sanacora G., Krystal J.H., The NMDA receptor as a therapeutic target in major depressive disorder, CNS Neurol. Disord. Drug Targets, 2007, 6, 101–115 http://dx.doi.org/10.2174/187152707780363267CrossrefGoogle Scholar

  • [180] Zawilska J.B., Rosiak J., Senderecka M., Nowak J.Z., Suppressive effect of NMDA receptor antagonist MK-801 on nocturnal serotonin N-acetyl transferase activity in the rat pineal gland, Pol. J. Pharmacol., 1997, 49, 479–483 Google Scholar

  • [181] Swerdlow N.R., van Bergeijk D.P., Bergsma F., Weber E., Talledo J., The effects of memantine on prepulse inhibition, Neuropsychopharmacol., 2009, 34, 1854–1864 http://dx.doi.org/10.1038/npp.2009.7CrossrefGoogle Scholar

  • [182] Muller N., Schwarz M., The immunological basis of glutamatergic disturbance in Schizophrenia: towards an integrated view, J. Neural Transm., 2007b (sppl. 72), 263–280 Google Scholar

  • [183] Muller N., Myint A.M., Scharz M.J., Kynurenine pathway in schizophrenia: pathophysiological and therapeutic aspects, Curr. Pharm. Des., 2011, 17, 130–136 http://dx.doi.org/10.2174/138161211795049552CrossrefGoogle Scholar

  • [184] Carlsson A., The current status of the dopamine hypothesis of schizophrenia, Neuropsychopharmacology, 1988, 1, 179–186 http://dx.doi.org/10.1016/0893-133X(88)90012-7CrossrefGoogle Scholar

  • [185] Jentsch J.D., Roth R.H., The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia, Neuropsychopharmacol., 1999, 20, 201–225 http://dx.doi.org/10.1016/S0893-133X(98)00060-8CrossrefGoogle Scholar

  • [186] Hui C., Wardwell B., Tsai G.E., Novel Therapies for Schizophrenia: Understanding the Glutamatergic Synapse and Potential Targets for Altering N-methyl-D-aspartate Neurotransmission, Recent Pat. CNS Drug Discov., 2009, 4, 220–238 http://dx.doi.org/10.2174/157488909789104857CrossrefGoogle Scholar

  • [187] Mezler M., Geneste H., Gault L., Marek G.J., LY-2140023, a prodrug of the group II metabotropic glutamate receptor agonist LY-404039 for the potential treatment of schizophrenia, Curr. Opin.Investig. Drugs, 2010, 11, 833–845 Google Scholar

  • [188] Stone T.W., Darlington L.G., Endogenous kynurenines as targets for drug discovery and development, Nat. Rev. Drug Discov., 2002, 1, 609–620 http://dx.doi.org/10.1038/nrd870CrossrefGoogle Scholar

  • [189] Guillemin G.J., Kerr S.J., Smythe G.A., Smith D.G., Kapoor V., Armati P.J., et al., Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection, J. Neurochem., 2001, 78, 842–853 http://dx.doi.org/10.1046/j.1471-4159.2001.00498.xCrossrefGoogle Scholar

  • [190] Schwarcz R., The kynurenine pathway of tryptophan degradation as a drug target, Curr.Opin.Pharmacol., 2004, 4, 12–17 http://dx.doi.org/10.1016/j.coph.2003.10.006CrossrefGoogle Scholar

  • [191] Guillemin G.J., Smythe G., Takikawa O., Brew B. J., Expression of indoleamine 2, 3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons, Glia, 2005, 49, 15–23 http://dx.doi.org/10.1002/glia.20090CrossrefGoogle Scholar

  • [192] Xiao B.G., Link H., Is there a balance between microglia and astrocytes in regulating Th1/Th2-cell responses and neuropathologies? Immunol. Today, 1999, 20, 477–479 http://dx.doi.org/10.1016/S0167-5699(99)01501-7CrossrefGoogle Scholar

  • [193] Aloisi F., Ria F., Adorini L., Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes, Immunol. Today, 2000, 21, 141–147 http://dx.doi.org/10.1016/S0167-5699(99)01512-1CrossrefGoogle Scholar

  • [194] Rothermundt M., Ohrmann P., Abel S., Siegmund A., Pedersen A., Ponath G., et al., Glial cell activation in a subgroup of patients with schizophrenia indicated by increased S100B serum concentrations and elevated myo-inositol, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31, 361–364 http://dx.doi.org/10.1016/j.pnpbp.2006.09.013CrossrefGoogle Scholar

  • [195] Grohmann U., Fallarino F., Puccetti P., Tolerance, DCs and tryptophan: much ado about IDO, Trends Immunol., 2003, 24, 242–248 http://dx.doi.org/10.1016/S1471-4906(03)00072-3CrossrefGoogle Scholar

  • [196] Miller C.L., Llenos I.C., Dulay J.R., Barillo M.M., Yolken R.H., Weis S., Expression of the kynurenine pathway enzyme tryptophan 2, 3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia, Neurobiol. Dis., 2004, 15, 618–629 http://dx.doi.org/10.1016/j.nbd.2003.12.015CrossrefGoogle Scholar

  • [197] Erhardt S., Schwieler, L., Engberg G., Kynurenic acid and schizophrenia, Adv. Exp. Med. Biol., 2003, 527, 155–165 CrossrefGoogle Scholar

  • [198] Linderholm K.R., Skogh E., Olsson S.K., Dahl M.L., Holtze M., Engberg G., et al., Increased levels of kynurenine and kynurenic acid in the CSF of patients with Schizophrenia, Schizophr. Bull., (In press) doi:10.1093/schbul/sbq086 CrossrefGoogle Scholar

  • [199] Erhardt S., Blennow K., Nordin C., Skogh E., Lindstrom L.H., Engberg G., Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia, Neurosci. Lett., 2001, 313, 96–98 http://dx.doi.org/10.1016/S0304-3940(01)02242-XCrossrefGoogle Scholar

  • [200] Schwarcz R., Rassoulpour A., Wu H.Q., Medoff D., Tamminga C.A., Roberts R.C., Increased cortical kynurenate content in schizophrenia, Biol. Psychiatry, 2001, 50, 521–530 http://dx.doi.org/10.1016/S0006-3223(01)01078-2CrossrefGoogle Scholar

  • [201] Borland L.M., Michael A.C., Voltammetric study of the control of striatal dopamine release by glutamate, J. Neurochem., 2004, 91, 220–229 http://dx.doi.org/10.1111/j.1471-4159.2004.02708.xCrossrefGoogle Scholar

  • [202] Kim J.S., Kornhuber H.H., Schmid-Burgk W., Holzmuller B., Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia, Neurosci. Lett., 1980, 20, 379–382 http://dx.doi.org/10.1016/0304-3940(80)90178-0CrossrefGoogle Scholar

  • [203] Tsai G., Passani L.A., Slusher B.S., Carter R., Baer L., Kleinman J.E., et al., Abnormal excitatory neurotransmitter metabolism in schizophrenic brains, Arch. Gen. Psychiatry, 1995, 52, 829–836 CrossrefGoogle Scholar

  • [204] Koo J.W., Russo S.J., Ferguson D., Nestler E.J., Duman R.S., Nuclear factor-kB is a critical mediator of stress impaired neurogenesis and depressive behaviour, Proc. Natl. Acad. Sci. USA, 2010, 107, 2669–2674 http://dx.doi.org/10.1073/pnas.0910658107CrossrefGoogle Scholar

  • [205] Madrigal J.L.M., Moro M.A., Lizasoain I., Lorenzo P., Castrillo A., Bosca L., et al., Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kBmediated mechanisms, J Neurochem., 2001, 76, 532–538 http://dx.doi.org/10.1046/j.1471-4159.2001.00108.xCrossrefGoogle Scholar

  • [206] Packer M.A., Stasiv Y., Benraiss A., Chmielnicki E., Grinberg A., Heiner W., et al., Nitric oxide negatively regulates mammalian adult neurogenesis, Proc. Natl. Acad. Sci. USA, 2003, 100, 9566–9571 http://dx.doi.org/10.1073/pnas.1633579100CrossrefGoogle Scholar

  • [207] Zhou Q.G., Hu Y., Hua Y., Hu M., Luo C.X., Han X., et al. Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis, J. Neurochem., 2007, 103, 1843–1854 http://dx.doi.org/10.1111/j.1471-4159.2007.04914.xCrossrefGoogle Scholar

  • [208] Bachis A., Cruz M.I., Nosheny R.L., Mocchetti I., Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex, Neurosci. Lett., 2008, 442, 104–108 http://dx.doi.org/10.1016/j.neulet.2008.06.081CrossrefGoogle Scholar

  • [209] Kubera M., Obuchowicz E., Goehler L., Brzeszcz J., Maes M., In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35, 744–759 http://dx.doi.org/10.1016/j.pnpbp.2010.08.026CrossrefGoogle Scholar

  • [210] McKernan D.P., Dinan T.G., Cryan J.F., “Killing the Blues”: A role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog. Neurobiol., 2009, 88, 246–263 http://dx.doi.org/10.1016/j.pneurobio.2009.04.006CrossrefGoogle Scholar

  • [211] Harlan J., Chen Y., Gubbins E., Mueller R., Roch J.M., Walter K., et al., Variants in Apaf-1 segregating with major depression promote apoptosome function, Mol. Psychiatry, 2006, 11, 76–85 http://dx.doi.org/10.1038/sj.mp.4001755CrossrefGoogle Scholar

  • [212] Sorrells S.F., Sapolsky R.M., An inflammatory review of glucocorticoid actions in the CNS, Brain Behav. Immun., 2007, 21, 259–272 http://dx.doi.org/10.1016/j.bbi.2006.11.006CrossrefGoogle Scholar

  • [213] Garcia-Bueno B., Caso J.R., Leza J.C., Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms, Neurosci. Biobehav. Rev., 2008a, 32, 1136–1151 http://dx.doi.org/10.1016/j.neubiorev.2008.04.001CrossrefGoogle Scholar

  • [214] Garcia-Bueno B., Madrigal J.L., Pérez-Nievas B.G., Leza J.C., Stress mediators regulate brain prostaglandin synthesis and peroxisome proliferator-activated receptor-gamma activation after stress in rats, Endocrinology, 2008b, 149, 1969–1978 http://dx.doi.org/10.1210/en.2007-0482CrossrefGoogle Scholar

  • [215] Nair A., Bonneau R.H., Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation, J. Neuroimmunol., 2006, 171, 72–85 http://dx.doi.org/10.1016/j.jneuroim.2005.09.012CrossrefGoogle Scholar

  • [216] Sapolsky R.M., Is impaired neurogenesis relevant to the affective symptoms of depression? Biol. Psychiatry, 2004, 56, 137–139 http://dx.doi.org/10.1016/j.biopsych.2004.04.012CrossrefGoogle Scholar

  • [217] Barrientos R.M., Sprunger D.B., Campeau S., Higgins E.A., Watkins L.R., Rudy J.W., et al., Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist, Neuroscience, 2003, 121, 847–853 http://dx.doi.org/10.1016/S0306-4522(03)00564-5CrossrefGoogle Scholar

  • [218] Tong L., Balazs R., Soiampornkul R., Thangipon W., Cotman C.W., Interleukin-1β impairs brain derived neurotrophic factor-induced signal transduction, Neurobiol. Ageing, 2008, 29, 1380–1393 http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.027CrossrefGoogle Scholar

  • [219] Yolken R.H., Torrey E.F., Viruses, schizophrenia, and bipolar disorder, Clin. Microbiol. Rev., 1995, 8, 131–145 Google Scholar

  • [220] Pearce B.D., Viruses and psychiatric disorders, In: Siegel A., Zalcman S.S., (Eds.), The neuroimmunological basis of behavioral and mental disorders, Springer Science, 2009, pp.383–410 Google Scholar

  • [221] Buka S.L., Tsuang M.T., Torrey E.F., Klebanoff M.A., Bernstein D., Yolken R.H., Maternal infections and subsequent psychosis among offspring, Arch. Gen. Psychiatry, 2001a, 58, 1032–1037 http://dx.doi.org/10.1001/archpsyc.58.11.1032CrossrefGoogle Scholar

  • [222] Rapoport J.L., Addington A.M., Frangou S., Psych M.R., The neurodevelopmental model of schizophrenia: update 2005, Mol. Psychiatry, 2005, 10, 434–449 http://dx.doi.org/10.1038/sj.mp.4001642CrossrefGoogle Scholar

  • [223] DiCicco-Bloom E., Lord C., Zwaigenbaum L., Courchesne E., Dager S.R., Schmitz C., et al., The developmental neurobiology of autism spectrum disorder, J. Neurosci., 2006, 26, 6897–6906 http://dx.doi.org/10.1523/JNEUROSCI.1712-06.2006CrossrefGoogle Scholar

  • [224] Brown A.S., Derkits E.J., Prenatal Infection and Schizophrenia: A Review of Epidemiologic and Translational Studies, Am. J. Psychiat., 2010, 167, 261–280 http://dx.doi.org/10.1176/appi.ajp.2009.09030361CrossrefGoogle Scholar

  • [225] Patterson P.H., Maternal influenza infection leads to neuropathology and behavioral abnormalities in adult offspring, Neuropsychopharmacology, 2005, 30, S9–S9 http://dx.doi.org/10.1038/sj.npp.1300524CrossrefGoogle Scholar

  • [226] Gilmore J.H., Jarskog L.F., Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia, Schizophr. Res., 1997, 24, 365–367 http://dx.doi.org/10.1016/S0920-9964(96)00123-5CrossrefGoogle Scholar

  • [227] Buka S.L., Tsuang M.T., Torrey E.F., Klebanoff M.A., Wagner R.L., Yolken R.H., Maternal cytokine levels during pregnancy and adult psychosis, Brain Behav. Immun., 2001b, 15, 411–420 http://dx.doi.org/10.1006/brbi.2001.0644CrossrefGoogle Scholar

  • [228] Brown A.S., Hooton J., Schaefer C.A., Zhang H., Petkova E., Babulas V., et al., Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring, Am. J. Psychiat., 2004, 161, 889–895 http://dx.doi.org/10.1176/appi.ajp.161.5.889CrossrefGoogle Scholar

  • [229] Ellman L.M., Deicken R.F., Vinogradov S., Kreman W.S., Poole J.H., Kern D.M., et al., Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8, Schizophr. Res., 2010, 121, 46–54 http://dx.doi.org/10.1016/j.schres.2010.05.014CrossrefGoogle Scholar

  • [230] Balschun D., Wetzel W., Del Rey A., Pitossi F., Schneider H., Zuschratter W., et al., Interleukin-6: a cytokine to forget, FASEB J., 2004, 18, 1788–1790 Google Scholar

  • [231] Sparkman N.L., Buchanan J.B., Heven J.R., Chen J., Beverly J.L., Johnson R.W., et al., Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers, Neuroscience, 2006, 26, 10709–10716 http://dx.doi.org/10.1523/JNEUROSCI.3376-06.2006CrossrefGoogle Scholar

  • [232] Smith S.E.P., Li J., Garbett K., Mirnics K., Patterson P.H., Maternal Immune Activation alters fetal brain development through interleukin-6, J. Neurosci., 2007, 27, 10695–10702 http://dx.doi.org/10.1523/JNEUROSCI.2178-07.2007CrossrefGoogle Scholar

  • [233] Girard S., Tremblay L., Lepage M., Sebire G., IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation, J. Immunol., 2010, 184, 3997–4005 http://dx.doi.org/10.4049/jimmunol.0903349CrossrefGoogle Scholar

  • [234] Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A., Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3, Nature, 2001, 413, 732–738 http://dx.doi.org/10.1038/35099560CrossrefGoogle Scholar

  • [235] De Miranda J., Yaddanapudi K., Hornig M., Lipkin W.I., Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5, FASEB J, 2009, 23, 1064–1071 http://dx.doi.org/10.1096/fj.08-121434CrossrefGoogle Scholar

  • [236] De Miranda J., Yaddanapudi K., Horing M., Villar G., Serge R., Lipkin W.I., Induction of Toll-Like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances, mBio, 2010, 1(4), Doi:10.1128/mBio.00176-10 CrossrefGoogle Scholar

  • [237] Meyer U., Yee B.K., Feldon J., The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist, 2007, 13, 241–256 http://dx.doi.org/10.1177/1073858406296401CrossrefGoogle Scholar

  • [238] McAlonan G.M., Li Q., Cheung C., The timing and specificity of prenatal immune risk factors for autism model in the mouse and relevance to schizophrenia, Neurosignals, 2010, 18, 129–139 http://dx.doi.org/10.1159/000321080CrossrefGoogle Scholar

  • [239] Meyer U., Feldon J., Yee B.K., A review of the fetal brain cytokine imbalance hypothesis of schizophrenia, Schizophr. Bull., 2009, 35, 959–972 http://dx.doi.org/10.1093/schbul/sbn022CrossrefGoogle Scholar

  • [240] Leonard B.E., The concept of depression as a dysfunction of the immune system, Curr. Immunol. Rev., 2010, 6, 205–212 http://dx.doi.org/10.2174/157339510791823835CrossrefGoogle Scholar

  • [241] Bayer T. A., Buslei R., Havas L., Falkai P., Evidence for activation of microglia in patients with psychiatric illnesses, Neurosci. Lett., 1999, 271, 126–128 http://dx.doi.org/10.1016/S0304-3940(99)00545-5CrossrefGoogle Scholar

  • [242] Wierzba-Bobrowicz T., Lewandowskan E., Lechowicz W., Stepien T., Pasennik E., Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics, Folia Neuropathol., 2005, 43, 81–89 Google Scholar

  • [243] Jaaro-Peled H., Ayhan Y., Pletnikov M. V., Sawa A., Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models, Schizophr. Bull., 2007, 36, 301–313 http://dx.doi.org/10.1093/schbul/sbp133CrossrefGoogle Scholar

  • [244] Piontkewitz Y., Assaf Y., Weiner I., Post-pubertal emergence of schizophrenia like abnormalities following prenatal maternal immune system activation and their prevention: modeling the disorder and its prodrome, Int. Brain Res. Org., 2007, 7, 25–33 Google Scholar

  • [245] Meisenzahl E.M., Rujescu D., Kirner A., Giegling I., Kathmann N., Leinsinger G., et al., Association of an interleukin-1beta genetic polymorphism with altered brain structure in patients with schizophrenia, Am. J. Psychiat., 2001, 158, 1316–1319 http://dx.doi.org/10.1176/appi.ajp.158.8.1316CrossrefGoogle Scholar

  • [246] Behrens M.M., Ali S. S., Duggan L.L., Interleukin-6 mediates the increase in NADP-oxidase in the ketamine model of schizophrenia, J. Neurosci., 2008, 28, 13957–13966 http://dx.doi.org/10.1523/JNEUROSCI.4457-08.2008CrossrefGoogle Scholar

  • [247] Rajkowska G., Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells, Biol. Psychiatry, 2000, 48, 766–777 http://dx.doi.org/10.1016/S0006-3223(00)00950-1CrossrefGoogle Scholar

  • [248] Parashos I.A., Tulper L.A., Blitchington T., Krishnan K.R. Magnetic-resonance morphometry in patient with major depression, Psychiatry Res., 1998, 84, 7–15 http://dx.doi.org/10.1016/S0925-4927(98)00042-0CrossrefGoogle Scholar

  • [249] Steingard R.J., Renshaw P.F., Hennen J., Lenox M., Cintron C.B., Young A.D. et al., Smaller frontal lobe white matter volumes in depressed adolescents, Biol. Psychiatry., 2002, 52, 413–417 http://dx.doi.org/10.1016/S0006-3223(02)01393-8CrossrefGoogle Scholar

  • [250] Campbell S., Marriott M., Nahmias C., MacQueen G.M., Lower hippocampal volume in patients suffering from major depression: a meta-analysis, Am. J. Psychiat., 2004, 161, 598–607 http://dx.doi.org/10.1176/appi.ajp.161.4.598CrossrefGoogle Scholar

  • [251] Leonard B.E., Inflammation, depression and dementia: are they connected? Neurochem. Res., 2007, 32, 1749–1756 http://dx.doi.org/10.1007/s11064-007-9385-yCrossrefGoogle Scholar

  • [252] Miller G.E., Freedland K.E., Carney R.M., Stetler C.A., Banks W.A., Pathways linking depression, adiposity and inflammatory markers in healthy young adults, Brain Behav. Immun., 2003, 17, 276–285 http://dx.doi.org/10.1016/S0889-1591(03)00057-6CrossrefGoogle Scholar

  • [253] Brambilla F., Maggioni M., Blood levels of cytokines in elderly patients with major depressive disorder, Acta Psychiat. Scand., 1998, 97, 309–313 http://dx.doi.org/10.1111/j.1600-0447.1998.tb10005.xCrossrefGoogle Scholar

  • [254] Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W., From inflammation to sickness and depression: when the immune system subjugates the brain, Nat. Rev. Neurosci., 2008, 9, 46–56 http://dx.doi.org/10.1038/nrn2297CrossrefGoogle Scholar

  • [255] Capuron L., Ravaud A., Gualde N., Bosmans E., Dantzer R., Maes M., et al., Association between immune activation and early depressive symptoms in cancer patients treated with interleukin-2- based therapy, Psychoneuroendocrinol., 2001, 26, 797–808 http://dx.doi.org/10.1016/S0306-4530(01)00030-0CrossrefGoogle Scholar

  • [256] Berthold-Losleben M., Heitmann S., Himmerich H., Anti-inflammatory drugs in psychiatry, Inflamm. Allergy Drugs Targets, 2009, 8, 266–276 http://dx.doi.org/10.2174/187152809789352221CrossrefGoogle Scholar

  • [257] Davis A., Gihooley M., Agius M., Using non-steroidal anti-inflammatory drugs in the treatment of depression, Psychiatr. Danub., 2010 (suppl 1), S49–52 Google Scholar

  • [258] Muller N., Schwarz M.J., Anti-inflammatory treatment approaches in major depression, Eur. Psychiatry, 2011, 26, 2093 http://dx.doi.org/10.1016/S0924-9338(11)73796-8CrossrefGoogle Scholar

  • [259] Maas D.W., Westendorp R.G., Williams J.M., de Craen A.J., van der Mast R.C., TNF-α antagonist infliximab in the treatment of depression in older adults: results of a prematurely ended, randomized, placebo-controlled trial, J. Clin. Psychopharmacol., 2010, 30, 343–345 http://dx.doi.org/10.1097/JCP.0b013e3181dcf0deCrossrefGoogle Scholar

About the article

Published Online: 2011-06-26

Published in Print: 2011-06-01

Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-011-0019-0.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in