Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Recent developments in neuropathology of autism spectrum disorders

Dora Polšek / Tomislav Jagatic / Maja Cepanec
  • Faculty of Education and Rehabilitation Sciences, Department of Speech and Language Pathology, University of Zagreb, Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Hof / Goran Šimić
Published Online: 2011-09-24 | DOI: https://doi.org/10.2478/s13380-011-0024-3


Autism spectrum disorders (ASD) represent complex neurodevelopmental disorders characterized by impairments in reciprocal social interactions, abnormal development and use of language, and monotonously repetitive behaviors. With an estimated heritability of more than 90%, it is the most strongly genetically influenced psychiatric disorder of the young age. In spite of the complexity of this disorder, there has recently been much progress in the research on etiology, early diagnosing, and therapy of autism. Besides already advanced neuropathologic research, several new technological innovations, such as sleep functional MRI, diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy imaging (1H-MRS) divulged promising breakthroughs in exploring subtle morphological and neurochemical changes in the autistic brain. This review provides a comprehensive summary of morphological and neurochemical alterations in autism known to date, as well as a short introduction to the functional research that has begun to advance in the last decade. Finally, we mention the progress in establishing new standardized diagnostic measures and its importance in early recognition and treatment of ASD.

Keywords: Autism; Autism spectrum disorder

  • [1] Bailey A., Phillips W., Rutter M., Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J. Child Psychol. Psychiatry, 1996, 37, 89–126 http://dx.doi.org/10.1111/j.1469-7610.1996.tb01381.xCrossrefGoogle Scholar

  • [2] Amaral D. G., Schumann C. M., Wu Nordahl C., Neuroanatomy of autism, Trends in Neuroscience, 2008, 31, 137–145 http://dx.doi.org/10.1016/j.tins.2007.12.005CrossrefGoogle Scholar

  • [3] Rice C., Prevalence of Autism Spectrum Disorders — Autism and Developmental Disabilities Monitoring Network, United States, 2006, MMWR Surveill. Summ., 2009, 58, 1–20 Google Scholar

  • [4] Courchesne E., Pierce K., Schumann C. M., Redcay E., Buckwalter J. A., Kennedy D. P., Morgan J., Mapping Early Brain Development in Autism, Neuron, 2007, 56, 399–413 http://dx.doi.org/10.1016/j.neuron.2007.10.016CrossrefGoogle Scholar

  • [5] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, 1994 Google Scholar

  • [6] Carper R., Courchesne E., Localized enlargement of the frontal lobe in autism, Biol. Psychiatry, 2005, 57, 126–133 http://dx.doi.org/10.1016/j.biopsych.2004.11.005CrossrefGoogle Scholar

  • [7] Palmen S. J. M. C., van Engeland H., Review on structural neuroimaging findings in autism, J. Neural Transm., 2004, 111, 903–929 http://dx.doi.org/10.1007/s00702-003-0068-9CrossrefGoogle Scholar

  • [8] Palmen S.J., van Engeland H., Hof P.R., Schmitz C., Neuropathological findings in autism, Brain, 2004, 127(Pt 12), 2572–2583 http://dx.doi.org/10.1093/brain/awh287CrossrefGoogle Scholar

  • [9] Courchesne, E., Pierce K., Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity, Int. J. Dev. Neurosci., 2005, 23, 153–170 http://dx.doi.org/10.1016/j.ijdevneu.2005.01.003CrossrefGoogle Scholar

  • [10] Courchesne E, Carper R, Akshoomoff N., Evidence of brain overgrowth in the first year of life in autism, JAMA, 2003, 290, 337–344 http://dx.doi.org/10.1001/jama.290.3.337CrossrefGoogle Scholar

  • [11] Carper R. A., Moses P., Tigue Z. D., Courchesne E., Cerebral lobes in autism: early hyperplasia and abnormal age effects, Neuroimage, 2002, 16, 1038–1051 http://dx.doi.org/10.1006/nimg.2002.1099CrossrefGoogle Scholar

  • [12] Herbert M. R., Ziegler D. A., Deutsch C. K., O’Brien L. M., Lange N., Bakardjiev A., et al., Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys, Brain, 2003, 126, 1182–1192 http://dx.doi.org/10.1093/brain/awg110CrossrefGoogle Scholar

  • [13] Casanova M. F., Buxhoeveden D. P., Switala A. E., Roy E., Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432 CrossrefGoogle Scholar

  • [14] Lücke J., von der Malsburg C., Rapid processing and unsupervised learning in a model of the cortical macrocolumn, Neural Comput., 2004, 16, 501–533 http://dx.doi.org/10.1162/089976604772744893CrossrefGoogle Scholar

  • [15] Casanova M. F., van Kooten I. A. J., Switala A. E., van Engeland H., Heinsen H., Steinbusch H. W. M. et al., Minicolumnar abnormalities in autism, Acta Neuropathol., 2006, 112, 287–303 http://dx.doi.org/10.1007/s00401-006-0085-5CrossrefGoogle Scholar

  • [16] Rakic P., A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, 18, 383–388 http://dx.doi.org/10.1016/0166-2236(95)93934-PCrossrefGoogle Scholar

  • [17] Rakic P., Limits of neurogenesis in primates, Science, 1985, 227, 1054–1056 http://dx.doi.org/10.1126/science.3975601CrossrefGoogle Scholar

  • [18] Dehaene-Lambertz G., Hertz-Pannier L., Dubois J., Nature and nurture in language acquisition: anatomical and functional brainimaging studies in infants, Trends Neurosci., 2006, 29, 367–373 http://dx.doi.org/10.1016/j.tins.2006.05.011CrossrefGoogle Scholar

  • [19] Redcay E., Courchesne E., Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2-3-year-old children with autism spectrum disorder, Biol. Psychiatry, 2008, 64, 589–598 http://dx.doi.org/10.1016/j.biopsych.2008.05.020CrossrefGoogle Scholar

  • [20] Pierce K. Early functional brain development in autism and the promise of sleep fMRI, Brain Res., 2010, 1380, 162–174 http://dx.doi.org/10.1016/j.brainres.2010.09.028CrossrefGoogle Scholar

  • [21] Dinstein I., Pierce K., Eyler L., Solso S., Malach R, Behrmann M. et al., Disrupted neural synchronization in toddlers with autism, Neuron, 2011, 70, 1218–1225 http://dx.doi.org/10.1016/j.neuron.2011.04.018CrossrefGoogle Scholar

  • [22] Knaus T. A., Silver A. M., Kennedy M., Lindgren K. A., Dominick K. C., Siegel J. et al., Language laterality in autism spectrum disorder and typical controls: a functional, volumetric, and diffusion tensor MRI study, Brain Lang., 2010, 112, 113–120 http://dx.doi.org/10.1016/j.bandl.2009.11.005CrossrefGoogle Scholar

  • [23] Kleinhans N. M, Richards T., Johnson L. C., Weaver K. E., Greenson J., Dawson G. et al., fMRI evidence of neural abnormalities in the subcortical face processing system in ASD Neuroimage, 2011, 54, 697–704 http://dx.doi.org/10.1016/j.neuroimage.2010.07.037CrossrefGoogle Scholar

  • [24] Corbett B., Carmeana V., Ravizzae S., Wendelkenf C., Henryg M. L., Cartera C. et al., A functional and structural study of emotion and face processing in children with autism, Psychiatry Res., 2009, 173, 196–205 http://dx.doi.org/10.1016/j.pscychresns.2008.08.005CrossrefGoogle Scholar

  • [25] Pierce K., Redcay E., Fusiform function in children with an autism spectrum disorder is a matter of “who”, Biol. Psychiatry, 2008, 64, 552–602 http://dx.doi.org/10.1016/j.biopsych.2008.05.013CrossrefGoogle Scholar

  • [26] van Kooten I. A., Palmen S. J., von Cappeln P., Steinbusch H. W., Korr H., Heinsen H., Hof P.R., van Engeland H., Schmitz C., Neurons in the fusiform gyrus are fewer and smaller in autism, Brain, 2008, 131, 987–999 http://dx.doi.org/10.1093/brain/awn033CrossrefGoogle Scholar

  • [27] Oblak A. L., Rosene D. L., Kemper T. L., Bauman M. L., Blatt G. J., Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism, Autism Res., 2011, 4, 200–211 http://dx.doi.org/10.1002/aur.188CrossrefGoogle Scholar

  • [28] Bush G., Luu P., Posner M. I., Cognitive and emotional influences in anterior cingulate cortex, Trends Cogn. Sci., 2000, 4, 215–222 http://dx.doi.org/10.1016/S1364-6613(00)01483-2CrossrefGoogle Scholar

  • [29] Kennedy D. P., Courchesne E., Functional abnormalities of the default network during self- and other-reflection in autism, Soc. Cogn. Affect. Neurosci., 2008, 3, 177–190 http://dx.doi.org/10.1093/scan/nsn011CrossrefGoogle Scholar

  • [30] Agam Y., Joseph R. M., Barton J. J., Manoach D. S., Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders, Neuroimage, 2010, 52, 336–347 http://dx.doi.org/10.1016/j.neuroimage.2010.04.010CrossrefGoogle Scholar

  • [31] Kana R. K., Keller T. A., Minshew N. J., Just M. A., Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks, Biol. Psychiatry, 2007, 62, 198–206 http://dx.doi.org/10.1016/j.biopsych.2006.08.004CrossrefGoogle Scholar

  • [32] Gomot M., Bernard F. A., Davis M. H., Belmonte M. K., Ashwin C., Bullmore E. T. et al., Change detection in children with autism: an auditory event-related fMRI study, Neuroimage, 2006, 29, 475–484 http://dx.doi.org/10.1016/j.neuroimage.2005.07.027CrossrefGoogle Scholar

  • [33] Simms M. L., Kemper T. L., Timbie C. M., Bauman M. L., Blatt G. J., The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups, Acta Neuropathol., 2009, 118, 673–684 http://dx.doi.org/10.1007/s00401-009-0568-2CrossrefGoogle Scholar

  • [34] Noriuchi M., Kikuchi Y., Yoshiura T., Kira R., Shigeto H., Hara T. et al., Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder, Brain Res., 2010, 1362, 141–149 http://dx.doi.org/10.1016/j.brainres.2010.09.051CrossrefGoogle Scholar

  • [35] Nimchinsky E.A., Vogt B.A., Morrison J.H., Hof P.R., Spindle neurons of the human anterior cingulate cortex, J Comp Neurol, 1995, 355(1):27–37 http://dx.doi.org/10.1002/cne.903550106CrossrefGoogle Scholar

  • [36] Nimchinsky E.A., Gilissen E., Allman J.M., Perl D.P., Erwin J.M., Hof P.R., A neuronal morphologic type unique to humans and great apes, Proc Natl Acad Sci U S A. 1999, 96(9):5268–5273 http://dx.doi.org/10.1073/pnas.96.9.5268CrossrefGoogle Scholar

  • [37] Allman J.M., Tetreault N.A., Hakeem A.Y., Manaye K.F., Semendeferi K., Erwin J.M., Park S., Goubert V., Hof P.R., The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans., Brain Struct Funct, 2010, 214(5–6):495–517 http://dx.doi.org/10.1007/s00429-010-0254-0CrossrefGoogle Scholar

  • [38] Seeley W.W., Carlin D.A., Allman J.M., Macedo M.N., Bush C., Miller B.L., DeArmond S.J., Early frontotemporal dementia targets neurons unique to apes and humans, Ann Neurol, 2006, 60(6):660–667 http://dx.doi.org/10.1002/ana.21055CrossrefGoogle Scholar

  • [39] Kim E.J., Sidhu M., Gaus S.E., Huang E.J., Hof P.R., Miller B.L., Dearmond S.J., Seeley W.W., Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia, Cereb Cortex, 2011- in press Google Scholar

  • [40] Paul L.K., Schieffer B., Brown W. S., Social processing deficits in agenesis of the corpus callosum: narratives from the Thematic Appreciation Test, Arch. Clin. Neuropsychol., 2004, 19, 215–225 http://dx.doi.org/10.1016/S0887-6177(03)00024-6CrossrefGoogle Scholar

  • [41] Brüne M., Schobel A., Karau R., Benali A., Faustmann P. M., Juckel G. et al., von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia, Acta Neuropathol., 2010, 119, 771–778 http://dx.doi.org/10.1007/s00401-010-0673-2CrossrefGoogle Scholar

  • [42] Santos M., Uppal N., Butti C., Wicinski B., Schmeidler J., Giannakopoulos P. et al., von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children, Brain Res., 2011, 1380, 206–217 http://dx.doi.org/10.1016/j.brainres.2010.08.067CrossrefGoogle Scholar

  • [43] Lombardo M. V., Baron-Cohen S., Unraveling the paradox of the autistic self, Wiley Interdiscipl. Rev. Cogn. Sci., 2010, 1, 393–403 Google Scholar

  • [44] Adolphs R., The neurobiology of social recognition, Curr. Opin. Neurobiol., 2001, 11, 231–239 http://dx.doi.org/10.1016/S0959-4388(00)00202-6CrossrefGoogle Scholar

  • [45] Sparks B. F., Friedman S. D., Shaw D. W., Aylward E. H., Echelard D., Artru A.A. et al., Brain structural abnormalities in young children with autism spectrum disorder, Neurology, 2002, 59, 184–192 CrossrefGoogle Scholar

  • [46] Schumann C. M., Nordahl C. W., Bridging the gap between MRI and postmortem research in autism, Brain Res., 2011, 1380, 175–186 http://dx.doi.org/10.1016/j.brainres.2010.09.061CrossrefGoogle Scholar

  • [47] Schumann C. M., Hamstra J., Goodlin-Jones B. L., Lotspeich L. J., Kwon H., Buonocore M. H. et al., The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages, J. Neurosci., 2004, 24, 6392–6401 http://dx.doi.org/10.1523/JNEUROSCI.1297-04.2004CrossrefGoogle Scholar

  • [48] Juranek J., Filipek P. A., Berenji G. R., Modahl C., Osann K., Spence M.A., Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children, J. Child Neurol., 2006, 21, 1051–1058 http://dx.doi.org/10.1177/7010.2006.00237CrossrefGoogle Scholar

  • [49] Munson J., Dawson G., Abbott R., Faja S., Webb S. J., Friedman S. D. et al., Amygdalar volume and behavioral development in autism, Arch. Gen. Psychiatry, 2006, 63, 686–669 http://dx.doi.org/10.1001/archpsyc.63.6.686CrossrefGoogle Scholar

  • [50] Amaral D. G., Schumann C. M., Nordahl C. W., Neuroanatomy of autism, Trends Neurosci., 2008, 31, 137–145 http://dx.doi.org/10.1016/j.tins.2007.12.005CrossrefGoogle Scholar

  • [51] Schumann C. M., Amaral D. G., Stereological analysis of amygdala neuron number in autism, J. Neurosci., 2006, 26, 7674–7679 http://dx.doi.org/10.1523/JNEUROSCI.1285-06.2006CrossrefGoogle Scholar

  • [52] Kemper T. L., Bauman M. L., The contribution of neuropathologic studies to the understanding of autism, Neurol. Clin., 1993, 11, 175–187 Google Scholar

  • [53] Schmahmann J. D., An emerging concept. The cerebellar contribution to higher function. Arch. Neurol., 1991, 48, 1178–1187 Google Scholar

  • [54] Courchesne E., Saitoh O., Townsend J. P., Yeung-Courchesne R., Press G. A., Lincoln A. J. et al., Cerebellar hypoplasia and hyperplasia in infantile autism, Lancet, 1994, 343, 63–64 http://dx.doi.org/10.1016/S0140-6736(94)90923-7CrossrefGoogle Scholar

  • [55] Stanfield A. C., McIntosh A. M., Spencer M. D., Philip R., Gaur S., Lawrie S. M., Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies, Eur. Psychiatry, 2008, 23, 289–299 http://dx.doi.org/10.1016/j.eurpsy.2007.05.006CrossrefGoogle Scholar

  • [56] Piven J., Saliba K., Bailey J., Arndt S., An MRI study of autism: the cerebellum revisited, Neurology, 1997, 49, 546–551 CrossrefGoogle Scholar

  • [57] Scott J. A., Schumann C. M., Goodlin-Jones B. L., Amaral D. G., A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder, Autism Res., 2009, 2, 246–257 http://dx.doi.org/10.1002/aur.97CrossrefGoogle Scholar

  • [58] Hazlett H. C., Poe M. D., Gerig G., Gimpel Smith R., Piven J., Cortical gray and white brain tissue volume in adolescents and adults with autism., Biol. Psychiatry, 2006, 59, 1–6 http://dx.doi.org/10.1016/j.biopsych.2005.06.015CrossrefGoogle Scholar

  • [59] Barea-Goraly N., Kwon H., Menon V., Eliez S., Lotspeich L., Reis A.L., White matter structure in autism: preliminary evidence from diffusion tensor imaging, Biol. Psychiatry, 2004, 55, 323–326 http://dx.doi.org/10.1016/j.biopsych.2003.10.022CrossrefGoogle Scholar

  • [60] Bashat D. B., Kronfeld-Duenias V., Zachor D. A., Ekstein P. M., Hendler T., Tarrasch R. et al., Accelerated maturation of white matter in young children with autism: A high b value DWI study, Neuroimage, 2007, 37, 40–47 http://dx.doi.org/10.1016/j.neuroimage.2007.04.060CrossrefGoogle Scholar

  • [61] Shukla D. K., Keehn B., Müller R. A., Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder, J. Child Psychol. Psychiatry, 2011, 52, 286–295 http://dx.doi.org/10.1111/j.1469-7610.2010.02342.xCrossrefGoogle Scholar

  • [62] Spence S. J., Schneider M. T., The role of epilepsy and epileptiform EEGs in autism spectrum disorders, Pediatr. Res., 2009, 65, 599–606 http://dx.doi.org/10.1203/PDR.0b013e31819e7168CrossrefGoogle Scholar

  • [63] Chez M. G., Chang M., Krasne V., Coughlan C., Kominsky M., Schwartz A., Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005, Epilepsy Behav., 2006, 8, 267–271 http://dx.doi.org/10.1016/j.yebeh.2005.11.001CrossrefGoogle Scholar

  • [64] Aldred S., Moore K. M., Fitzgerald M., Waring R. H., Plasma amino acid levels in children with autism and their families, J. Autism Dev. Disord., 2003, 33, 93–97 http://dx.doi.org/10.1023/A:1022238706604CrossrefGoogle Scholar

  • [65] Moreno-Fuenmayor H., Borjas L., Arrieta A., Valera V., Socorro-Candanoza L., Plasma excitatory amino acids in autism, Invest. Clin., 1996, 37, 113–128 Google Scholar

  • [66] Shinohe A., Hashimoto K., Nakamura K., Tsujii M., Iwata Y., Tsuchiya K.J. et al., Increased serum levels of glutamate in adult patients with autism, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, 30, 1472–1477 http://dx.doi.org/10.1016/j.pnpbp.2006.06.013CrossrefGoogle Scholar

  • [67] Purcell A. E., Jeon O. H., Zimmerman A. W., Blue M. E., Pevsner J., Postmortem brain abnormalities of the glutamate neurotransmitter system in autism, Neurology, 2001, 57, 1618–1628 CrossrefGoogle Scholar

  • [68] McDougle C. J., Erickson C. A., Stigler K. A., Posey D. J., Neurochemistry in the pathophysiology of autism, J. Clin. Psychiatry, 2005, Suppl 10, 9–18 Google Scholar

  • [69] McCauley J. L., Olson L. M., Delahanty R., Amin T., Nurmi E. L., Organ E. L. et al., A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism, Am. J. Med. Genet., 2004, 131B, 51–59 http://dx.doi.org/10.1002/ajmg.b.30038CrossrefGoogle Scholar

  • [70] Hogart A., Wu D., LaSalle J. M., Schanen N. C., The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13, Neurobiol. Dis., 2010, 38, 181–191 http://dx.doi.org/10.1016/j.nbd.2008.08.011CrossrefGoogle Scholar

  • [71] Nurmi E. L., Amin T., Olson L. M., Jacobs M. M., McCauley J. L., Lam A. Y. et al., Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism, Mol. Psychiatry, 2003, 8, 624–634 http://dx.doi.org/10.1038/sj.mp.4001283CrossrefGoogle Scholar

  • [72] Fatemi S. H., Reutiman T. J., Folsom T. D., Thuras P. D., GABA(A) receptor downregulation in brains of subjects with autism, J. Autism Dev. Disord., 2009, 39, 223–230 http://dx.doi.org/10.1007/s10803-008-0646-7CrossrefGoogle Scholar

  • [73] Oblak A. L., Gibbs T. T., Blatt G. J., Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism, J. Neurochem., 2010, 114, 1414–1423 Google Scholar

  • [74] Fatemi S. H, Halt A. R, Stary J. M, Kanodia R, Schulz S. C, Realmuto G. R., Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol. Psychiatry, 2002, 52, 805–810 http://dx.doi.org/10.1016/S0006-3223(02)01430-0CrossrefGoogle Scholar

  • [75] Bernardi S., Anagnostou E., Shen J., Kolevzon A, Buxbaum J. D., Hollander E. et al., In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism, Brain Res., 2011, 1380, 198–205 http://dx.doi.org/10.1016/j.brainres.2010.12.057CrossrefGoogle Scholar

  • [76] Ey E., Leblond C. S., Bourgeron T., Behavioral profiles of mouse models for autism spectrum disorders, Autism Res., 2011, 4, 5–16 http://dx.doi.org/10.1002/aur.175CrossrefGoogle Scholar

  • [77] Bangash M. A., Park J. M., Melnikova T., Wang D., Jeon S. K., Lee D. et al., Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism, Cell, 2011, 145, 758–772 http://dx.doi.org/10.1016/j.cell.2011.03.052CrossrefGoogle Scholar

  • [78] Peça J., Feliciano C., Ting J. T., Wang W., Wells M. F., Venkatraman T. N. et al., Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, 2011, 472, 437–442 http://dx.doi.org/10.1038/nature09965Google Scholar

  • [79] Bozdagi O., Sakurai T., Papapetrou D., Wang X., Dickstein D. L., Takahashi N., et al., Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication, Mol. Autism, 2010, 1:15 http://dx.doi.org/10.1186/2040-2392-1-15CrossrefGoogle Scholar

  • [80] Ellegood J., Lerch J. P., Henkelman R. M., Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism, Autism Res., 2011, doi: 10.1002/aur.215 CrossrefGoogle Scholar

  • [81] Gutierrez R. C., Hung J., Zhang Y., Kertesz A. C., Espina F. J., Colicos M. A., Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3, Neuroscience, 2009, 162, 208–221 http://dx.doi.org/10.1016/j.neuroscience.2009.04.062CrossrefGoogle Scholar

  • [82] Etherton M. R., Tabuchi K., Sharma M., Ko J., Südhof T. C., An autismassociated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus, EMBO J., 2011, 30, 2908–2919 http://dx.doi.org/10.1038/emboj.2011.182CrossrefGoogle Scholar

  • [83] Testa-Silva G., Loebel A., Giugliano M., de Kock C.P., Mansvelder H.D., Meredith R.M., Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism, Cereb. Cortex, 2011, Aug 19 [Epub ahead of print]_doi: 10.1093/cercor/bhr224 CrossrefGoogle Scholar

  • [84] Hagerman R., Au J., Hagerman P., FMR1 premutation and full mutation molecular mechanisms related to autism, J. Neurodev. Dis., 2011, 3, 211–224 http://dx.doi.org/10.1007/s11689-011-9084-5CrossrefGoogle Scholar

  • [85] DeLorey T. M., Sahbaie P., Hashemi E., Li W. W., Salehi A., Clark D. J., Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3, Behav. Brain Res., 2011, 216, 36–45 http://dx.doi.org/10.1016/j.bbr.2010.06.032CrossrefGoogle Scholar

  • [86] Fatemi S. H., Co-occurrence of neurodevelopmental genes in etiopathogenesis of autism and schizophrenia, Schizophr Res, 2010, 118, 303–304 http://dx.doi.org/10.1016/j.schres.2010.01.018CrossrefGoogle Scholar

  • [87] Holt R., Barnby G., Maestrini E., Bacchelli E., Brocklebank D., Sousa I. et al., Linkage and candidate gene studies of autism spectrum disorders in European populations, EU Autism MOLGEN Consortium, Eur. J. Hum. Genet., 2010, 18, 1013–1019 http://dx.doi.org/10.1038/ejhg.2010.69CrossrefGoogle Scholar

  • [88] McBride K. L., Varga E. A., Pastore M. T., Prior T. W., Manickam K., Atkin J. F. et al., Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly, Autism Res., 2010, 3, 137–141 http://dx.doi.org/10.1002/aur.132CrossrefGoogle Scholar

  • [89] Leboyer M., Philippe A., Bouvard M., Guilloud-Bataille M., Bondoux D., Tabuteau F. et al. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives, Biol. Psychiatry, 1999, 45, 158–163 http://dx.doi.org/10.1016/S0006-3223(97)00532-5CrossrefGoogle Scholar

  • [90] Cook E. H. Jr., Leventhal B. L., Freedman D. X., Free serotonin in plasma: autistic children and their first-degree relatives, Biol. Psychiatry, 1988, 24, 488–491 http://dx.doi.org/10.1016/0006-3223(88)90192-8CrossrefGoogle Scholar

  • [91] Hranilovic D., Bujas-Petkovic Z., Vragovic R., Vuk T., Hock K., Jernej B., Hyperserotonemia in adults with autistic disorder, J. Autism Dev. Disord., 2007, 37, 1934–1940 http://dx.doi.org/10.1007/s10803-006-0324-6CrossrefGoogle Scholar

  • [92] Kolevzon A., Newcorn J. H., Kryzak L., Chaplin W., Watner D., Hollander E. et al., Relationship between whole blood serotonin and repetitive behaviors in autism, Psychiatry Res., 2010, 175, 274–276 http://dx.doi.org/10.1016/j.psychres.2009.02.008CrossrefGoogle Scholar

  • [93] Brunton P.J., Russell J.A., The expectant brain: adapting for motherhood. Nat Rev Neurosci, 2008, 9(1), 11–25 http://dx.doi.org/10.1038/nrn2280CrossrefGoogle Scholar

  • [94] Neumann I.D., Brain oxytocin: a key regulator of emotional and social behaviours in both females and males, J Neuroendocrinol, 2008, 20(6):858–65 http://dx.doi.org/10.1111/j.1365-2826.2008.01726.xCrossrefGoogle Scholar

  • [95] Meyer-Lindenberg A., Domes G., Kirsch P., Heinrichs M., Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine., Nat Rev Neurosci, 2011, 12(9), 524–538 doi: 10.1038/nrn3044 http://dx.doi.org/10.1038/nrn3044CrossrefGoogle Scholar

  • [96] Insel T. R., O’Brien D. J., Leckman J. F., Oxytocin, vasopressin, and autism: is there a connection?, Biol. Psychiatry, 1999, 45, 145–157 http://dx.doi.org/10.1016/S0006-3223(98)00142-5CrossrefGoogle Scholar

  • [97] Ferguson J. N, Young L. J, Hearn E. F, Matzuk M. M, Insel T. R, Winslow J. T., Social amnesia in mice lacking the oxytocin gene, Nat. Genet., 2000, 25, 284–288 http://dx.doi.org/10.1038/77040CrossrefGoogle Scholar

  • [98] Šešo-Šimić Đ., Sedmak G., Hof P.R., Šimić G., Recent advances in the neurobiology of attachment behavior, Transl. Neurosci., 2010, 2, 148–159 Google Scholar

  • [99] Gale S., Ozonoff S., Lainhart J., Brief report: pitocin induction in autistic and nonautistic individuals, J. Autism Dev. Disord., 2003, 33, 205–208 http://dx.doi.org/10.1023/A:1022951829477CrossrefGoogle Scholar

  • [100] Insel T. R., A neurobiological basis of social attachment, Am. J. Psychiatry, 1997, 154, 726–735 Google Scholar

  • [101] Lotspeich L. J., Kwon H., Schumann C. M., Fryer S. L., Goodlin-Jones B. L., Buonocore M. H. et al., Investigation of neuroanatomical differences between autism and Asperger syndrome, Arch. Gen. Psychiatry, 2004, 61, 291–298 http://dx.doi.org/10.1001/archpsyc.61.3.291CrossrefGoogle Scholar

  • [102] Luyster R., Gotham K., Guthrie W., Coffing M., Petrak R., Pierce K. et al., The autism diagnostic observation schedule-toddler module: a new module of a standardized diagnostic measure for autism spectrum disorders, J. Autism Dev. Disord., 2009, 39, 1305–1320 http://dx.doi.org/10.1007/s10803-009-0746-zCrossrefGoogle Scholar

  • [103] Pierce K., Carter C., Weinfeld M., Desmond J., Hazin R., Bjork R. et al., Detecting, studying, and treating autism early: the one-year wellbaby check-up approach, J. Pediatr., 2011, 159, 458–465 http://dx.doi.org/10.1016/j.jpeds.2011.02.036CrossrefGoogle Scholar

  • [104] Uppal N., Papapetrou D., Santos M., Bozdagi O, Buxbaum J. D., Hof P. R., Autism spectrum disorders: neuropathology and animal models, Envir. Health Perspect., submitted Google Scholar

About the article

Published Online: 2011-09-24

Published in Print: 2011-09-01

Citation Information: Translational Neuroscience, Volume 2, Issue 3, Pages 256–264, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-011-0024-3.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Natascia Brondino, Matteo Rocchetti, Laura Fusar-Poli, Stefano Damiani, Arianna Goggi, Giuseppe Chiodelli, Serafino Corti, Livia Visai, and Pierluigi Politi
The World Journal of Biological Psychiatry, 2018, Page 1
Alex M. Pagnozzi, Eugenia Conti, Sara Calderoni, Jurgen Fripp, and Stephen E. Rose
International Journal of Developmental Neuroscience, 2018
Kristin K Jerger, Laura Lundegard, Aaron Piepmeier, Keturah Faurot, Amanda Ruffino, Margaret A Jerger, and Aysenil Belger
Global Advances in Health and Medicine, 2018, Volume 7, Page 216495611876900
Jackie J. Liu, Kevin P. Grace, Richard L. Horner, Miguel A. Cortez, Yiwen Shao, and Zhengping Jia
Molecular Brain, 2017, Volume 10, Number 1
Jacques S. Abramowicz
Journal of Ultrasound in Medicine, 2012, Volume 31, Number 8, Page 1261
Syed Faraz Kazim, Maria del Carmen Cardenas-Aguayo, Mohammad Arif, Julie Blanchard, Fatima Fayyaz, Inge Grundke-Iqbal, Khalid Iqbal, and Rong Wen
PLOS ONE, 2015, Volume 10, Number 3, Page e0118627
Ryan R. Green, Erin D. Bigler, Alyson Froehlich, Molly B. D. Prigge, Brittany G. Travers, Annahir N. Cariello, Jeffrey S. Anderson, Brandon A. Zielinski, Andrew Alexander, Nicholas Lange, and Janet E. Lainhart
Child Neuropsychology, 2016, Volume 22, Number 7, Page 795
Pallavi Rane, David Cochran, Steven M. Hodge, Christian Haselgrove, David N. Kennedy, and Jean A. Frazier
Harvard Review of Psychiatry, 2015, Volume 23, Number 4, Page 223
Marc Fakhoury
International Journal of Developmental Neuroscience, 2015, Volume 43, Page 70
Haley Trontel, Tyler Duffield, Erin Bigler, Alyson Froehlich, Molly Prigge, Jared Nielsen, Jason Cooperrider, Annahir Cariello, Brittany Travers, Jeffrey Anderson, Brandon Zielinski, Andrew Alexander, Nicholas Lange, and Janet Lainhart
Behavioral Sciences, 2013, Volume 3, Number 3, Page 348
Tyler C. Duffield, Haley G. Trontel, Erin D. Bigler, Alyson Froehlich, Molly B. Prigge, Brittany Travers, Ryan R. Green, Annahir N. Cariello, Jason Cooperrider, Jared Nielsen, Andrew Alexander, Jeffrey Anderson, P. Thomas Fletcher, Nicholas Lange, Brandon Zielinski, and Janet Lainhart
Journal of Clinical and Experimental Neuropsychology, 2013, Volume 35, Number 8, Page 867
Franco Cauda, Tommaso Costa, Sara Palermo, Federico D'Agata, Matteo Diano, Francesca Bianco, Sergio Duca, and Roberto Keller
Human Brain Mapping, 2014, Volume 35, Number 5, Page 2073
Laura Pina-Camacho, Sonia Villero, Leticia Boada, David Fraguas, Joost Janssen, Maria Mayoral, Cloe Llorente, Celso Arango, and Mara Parellada
Research in Autism Spectrum Disorders, 2013, Volume 7, Number 2, Page 333
Andrea Diaz-Stransky and Elaine Tierney
American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 2012, Volume 160C, Number 4, Page 295
Brian C. Kelley, Paul M. Arnold, John A. Grant, and Kathy L. Newell
Journal of Neurosurgery: Pediatrics, 2012, Volume 10, Number 2, Page 121

Comments (0)

Please log in or register to comment.
Log in