Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

IMPACT FACTOR 2018: 2.038

CiteScore 2018: 1.90

SCImago Journal Rank (SJR) 2018: 0.665
Source Normalized Impact per Paper (SNIP) 2018: 0.786

Open Access
See all formats and pricing
More options …

The cellular prion protein in multiple sclerosis: A potential target for neurotherapeutics?

Joseph Antony
Published Online: 2011-12-28 | DOI: https://doi.org/10.2478/s13380-011-0042-1


Multiple sclerosis (MS) is a debilitating disease that affects millions. There is no known cure for the disease and neither is the cause of the disease known. Recent studies have indicated that it is a multi-factorial disease with several genes involved. Importantly, sunlight and vitamin D have been implicated in the progression of the disease. The pathogenesis of MS chiefly involves loss of oligodendrocytes, which in addition to being killed by inflammatory mediators in the CNS, also succumbs to loss of trophic support from astrocytes. Neurotrophins play an important role in myelination and the cellular prion protein (PrPC) is a key player in this process. Although the physiological roles of PrPC remain to be fully understood, increasing evidence suggests multiple roles for PrPC in regulation of cellular immunity and for its interaction with several neurotrophins that are necessary for homeostasis of the nervous system. This mini-review focuses on the findings establishing a crucial role for PrPC in the neuropathogenesis of MS, emphasizing its neuroprotective role. Since MS is a multi-factorial disease with unknown etiology and no cure, this review aims to highlight endogenous repair mechanisms mediated by PrPC that might contribute to functional recovery in MS patients.

Keywords: Multiple sclerosis; Neuroinflammation; Prions

  • [1] Steinman L., Martin R., Bernard C., Conlon P., Oksenberg J. R., Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy, Annu. Rev. Neurosci., 2002, 25, 491–505 http://dx.doi.org/10.1146/annurev.neuro.25.112701.142913CrossrefGoogle Scholar

  • [2] Lucchinetti C. F., Brueck W., Rodriguez M., Lassmann H., Multiple sclerosis: lessons from neuropathology, Semin. Neurol., 1998, 18, 337–349 http://dx.doi.org/10.1055/s-2008-1040885CrossrefGoogle Scholar

  • [3] Villoslada P., Barcellos L. F., Oksenberg J. R., Chromosome 7q21–22 and multiple sclerosis, J. Neuroimmunol., 2004, 150, 1–2 http://dx.doi.org/10.1016/j.jneuroim.2004.01.016CrossrefGoogle Scholar

  • [4] Prat A., Antel J., Pathogenesis of multiple sclerosis, Curr. Opin. Neurol., 2005, 18, 225–230 http://dx.doi.org/10.1097/01.wco.0000169737.99040.31CrossrefGoogle Scholar

  • [5] Trapp B. D., Bö L., Mörk S., Chang A., Pathogenesis of tissue injury in MS lesions, J. Neuroimmunol., 1999, 98, 49–56 http://dx.doi.org/10.1016/S0165-5728(99)00081-8CrossrefGoogle Scholar

  • [6] Tran E. H., Hoekstra K., van Rooijen N., Dijkstra C. D., Owens T., Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice, J. Immunol., 1998, 161, 3767–3775 Google Scholar

  • [7] Lassmann H., Bruck W, Lucchinetti C., Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy, Trends Mol. Med., 2001, 7, 115–121 http://dx.doi.org/10.1016/S1471-4914(00)01909-2CrossrefGoogle Scholar

  • [8] Cifelli A., Arridge M., Jezzard P., Esiri M. M., Palace J., Matthews P. M., Thalamic neurodegeneration in multiple sclerosis, Ann. Neurol., 2002, 52, 650–653 http://dx.doi.org/10.1002/ana.10326CrossrefGoogle Scholar

  • [9] Sospedra M., Martin R., Immunology of multiple sclerosis, Annu. Rev. Immunol., 2005, 23, 683–747 http://dx.doi.org/10.1146/annurev.immunol.23.021704.115707CrossrefGoogle Scholar

  • [10] Rao S. M., Leo G. J., Bernardin L., Unverzagt F., Cognitive dysfunction in multiple sclerosis, I. Frequency, patterns, and prediction, Neurology, 1991, 41, 685–691 CrossrefGoogle Scholar

  • [11] Ferguson B., Matyszak M. K., Esiri M. M., Perry V. H., Axonal damage in acute multiple sclerosis lesions, Brain, 1997, 120, 393–399 http://dx.doi.org/10.1093/brain/120.3.393CrossrefGoogle Scholar

  • [12] Gehrmann J., Banati R. B., Cuzner M. L., Kreutzberg G. W., Newcombe J., Amyloid precursor protein (APP) expression in multiple sclerosis lesions, Glia, 1995, 15, 141–151 http://dx.doi.org/10.1002/glia.440150206CrossrefGoogle Scholar

  • [13] Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L., Axonal transection in the lesions of multiple sclerosis, N. Engl. J. Med., 1998, 338, 278–285 http://dx.doi.org/10.1056/NEJM199801293380502CrossrefGoogle Scholar

  • [14] Moser M., Colello R. J., Pott U., Oesch B., Developmental expression of the prion protein gene in glial cells, Neuron, 1995, 14, 509–517 http://dx.doi.org/10.1016/0896-6273(95)90307-0CrossrefGoogle Scholar

  • [15] Lledo P. M., Alonso M., Grubb M. S., Adult neurogenesis and functional plasticity in neuronal circuits, Nat. Rev. Neurosci., 2006, 7, 179–193 http://dx.doi.org/10.1038/nrn1867CrossrefGoogle Scholar

  • [16] Peters A., Palay S. L., The morphology of synapses, J. Neurocytol., 1996, 25, 687–700 http://dx.doi.org/10.1007/BF02284835CrossrefGoogle Scholar

  • [17] Hoek R. M., Ruuls S. R., Murphy C. A., Wright G. J., Goddard R., Zurawski S. M. et al., Down-regulation of the macrophage lineage through interaction with OX2 (CD200), Science, 2000, 290, 1768–1771 http://dx.doi.org/10.1126/science.290.5497.1768CrossrefGoogle Scholar

  • [18] Sofroniew M. V., Reactive astrocytes in neural repair and protection. Neuroscientist, 2005, 11, 400–407 http://dx.doi.org/10.1177/1073858405278321CrossrefGoogle Scholar

  • [19] Nguyen M. D., Julien J. P., Rivest S., Innate immunity: the missing link in neuroprotection and neurodegeneration?, Nat. Rev. Neurosci., 2002, 3, 216–227 http://dx.doi.org/10.1038/nrn752CrossrefGoogle Scholar

  • [20] Martino G., How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders, Lancet Neurol., 2004, 3, 372–378 http://dx.doi.org/10.1016/S1474-4422(04)00771-9CrossrefGoogle Scholar

  • [21] Butzkueven H., Zhang J. G., Soilu-Hanninen M., Hochrein H., Chionh F., Shipkam K. A. et al., LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival, Nat. Med., 2002, 8, 613–619 http://dx.doi.org/10.1038/nm0602-613CrossrefGoogle Scholar

  • [22] Zanata S. M., Lopes M. H., Mercadante A. F., Hajj G. N., Chiarini L. B., Nomizo R. et al., Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection, EMBO J., 2002, 21, 3307–3316 http://dx.doi.org/10.1093/emboj/cdf325CrossrefGoogle Scholar

  • [23] Lee J. W., Juliano R., Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways, Mol. Cells, 2004, 17, 188–202 Google Scholar

  • [24] Serafini B., Rosicarelli B., Magliozzi R., Stigliano E., Capello E., Mancardi G. L. et al., Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells, J. Neuropathol. Exp. Neurol., 2006, 65, 124–141 http://dx.doi.org/10.1097/01.jnen.0000199572.96472.1cCrossrefGoogle Scholar

  • [25] Frohman E. M., Racke M. K., Raine C. S., Multiple sclerosis — the plaque and its pathogenesis, N. Engl. J. Med., 2006, 354, 942–955 http://dx.doi.org/10.1056/NEJMra052130CrossrefGoogle Scholar

  • [26] Carson M. J., Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis, Glia, 2002, 40, 218–231 http://dx.doi.org/10.1002/glia.10145CrossrefGoogle Scholar

  • [27] Huseby E. S., Liggitt D., Brabb T., Schnabel B., Ohlén C., Goverman J., A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis, J. Exp. Med., 2001, 194, 669–676 http://dx.doi.org/10.1084/jem.194.5.669CrossrefGoogle Scholar

  • [28] Monson N. L., Brezinschek H. P., Brezinschek R. I., Mobley A., Vaughan G. K., Frohman E. M. et al., Receptor revision and atypical mutational characteristics in clonally expanded B cells from the cerebrospinal fluid of recently diagnosed multiple sclerosis patients, J. Neuroimmunol., 2005, 158, 170–181 http://dx.doi.org/10.1016/j.jneuroim.2004.04.022CrossrefGoogle Scholar

  • [29] Pashenkov M., Teleshova N., Link H., Inflammation in the central nervous system: the role for dendritic cells, Brain Pathol., 2003, 13, 23–33 http://dx.doi.org/10.1111/j.1750-3639.2003.tb00003.xCrossrefGoogle Scholar

  • [30] Tailor P., Tamura T., Ozato K., IRF family proteins and type I interferon induction in dendritic cells, Cell Res., 2006, 16, 134–140 http://dx.doi.org/10.1038/sj.cr.7310018CrossrefGoogle Scholar

  • [31] Tsutsui S., Hahn J. N., Johnson T. A., Ali Z., Jirik F. R., Absence of the cellular prion protein exacerbates and prolongs neuroinflammation in experimental autoimmune encephalomyelitis, Am. J. Pathol., 2008, 173, 1029–1041 http://dx.doi.org/10.2353/ajpath.2008.071062CrossrefGoogle Scholar

  • [32] Hu W., Nessler S., Hemmer B., Eagar T. N., Kane L. P., Leliveld S. R. et al., Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling, Brain, 133, 375–388 Google Scholar

  • [33] Burthem J., Urban B., Pain A., Roberts D. J., The normal cellular prion protein is strongly expressed by myeloid dendritic cells, Blood, 2001, 98, 3733–3738 http://dx.doi.org/10.1182/blood.V98.13.3733CrossrefGoogle Scholar

  • [34] Krebs B., Dorner-Ciossek C., Schumalzbauer R., Vassalo N., Herms J., Kretzschmar H. A., Prion protein induced signaling cascades in monocytes, Biochem. Biophys. Res. Commun., 2006, 340, 13–22 http://dx.doi.org/10.1016/j.bbrc.2005.11.158CrossrefGoogle Scholar

  • [35] Brown D. R., Besinger A., Herms J. W., Kretzschmar H. A., Microglial expression of the prion protein, Neuroreport, 1998, 9, 1425–1429 http://dx.doi.org/10.1097/00001756-199805110-00032CrossrefGoogle Scholar

  • [36] Linden R., Martins V. R., Prado M. A., Cammarota M., Izquierdo I., Brentani R. R., Physiology of the prion protein, Physiol. Rev., 2008, 88, 673–728 http://dx.doi.org/10.1152/physrev.00007.2007CrossrefGoogle Scholar

  • [37] de Almeida C. J., Chiarini L. B., da Silva J. P., E Silva P. M., Martins M. A., Linden R., The cellular prion protein modulates phagocytosis and inflammatory response, J. Leukoc. Biol., 2005, 77, 238–246 http://dx.doi.org/10.1189/jlb.1103531CrossrefGoogle Scholar

  • [38] Nelson P. T., Soma L. A., Lavi E., Microglia in diseases of the central nervous system, Ann. Med., 2002, 34, 491–500 http://dx.doi.org/10.1080/078538902321117698CrossrefGoogle Scholar

  • [39] Antony J. M., Paquin A., Nutt S. L., Kaplan D. R., Miller F. D., Endogenous microglia regulate development of embryonic cortical precursor cells, J. Neurosci. Res., 89, 286–298 Google Scholar

  • [40] Ford M. J., Burton L. J., Morris R. J., Hall S. M., Selective expression of prion protein in peripheral tissues of the adult mouse, Neuroscience, 2002, 113, 177–192 http://dx.doi.org/10.1016/S0306-4522(02)00155-0CrossrefGoogle Scholar

  • [41] Bradford B. M., Tuzi N. L., Feltri M. L., McCorquodale C., Cancellotti E., Manson J. C., Dramatic reduction of PrP C level and glycosylation in peripheral nerves following PrP knock-out from Schwann cells does not prevent transmissible spongiform encephalopathy neuroinvasion, J. Neurosci., 2009, 29, 15445–15454 http://dx.doi.org/10.1523/JNEUROSCI.4195-09.2009CrossrefGoogle Scholar

  • [42] Follet J., Lemaire-Vieille C., Blanquet-Grossard F., Podevin-Dimster V., Lehmann S., Chauvin J. P. et al., PrP expression and replication by Schwann cells: implications in prion spreading, J. Virol., 2002, 76, 2434–2439 http://dx.doi.org/10.1128/jvi.76.5.2434-2439.2002CrossrefGoogle Scholar

  • [43] Bremer J., Baumann F., Tiberi C., Wessig C., Fischer H., Schwarz P. et al., Axonal prion protein is required for peripheral myelin maintenance, Nat. Neurosci., 13, 310–318 Google Scholar

  • [44] Nazor K. E., Seward T., Telling G. C., Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression, Biochim. Biophys. Acta, 2007, 1772, 645–653 CrossrefGoogle Scholar

  • [45] Arruda-Carvalho M., Njaine B., Silveira M. S., Linden R., Chiarini L. B., Hop/STI1 modulates retinal proliferation and cell death independent of PrPC, Biochem. Biophys. Res. Commun., 2007, 361, 474–480 http://dx.doi.org/10.1016/j.bbrc.2007.07.038CrossrefGoogle Scholar

  • [46] Prinz M., Montrasio F., Furukawa H., van den Haar M. E., Schwarz P., Rülicke T. et al., Intrinsic resistance of oligodendrocytes to prion infection, J. Neurosci., 2004, 24, 5974–5981 http://dx.doi.org/10.1523/JNEUROSCI.0122-04.2004CrossrefGoogle Scholar

  • [47] Cohen R. I., Exploring oligodendrocyte guidance: ‘to boldly go where no cell has gone before’, Cell. Mol. Life Sci., 2005, 62, 505–510 http://dx.doi.org/10.1007/s00018-004-4485-1CrossrefGoogle Scholar

  • [48] Lappe-Siefke C., Goebbels S., Gravel M., Nicksch E., Lee J., Braun P. E. et al., Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination, Nat. Genet., 2003, 33, 366–374 http://dx.doi.org/10.1038/ng1095CrossrefGoogle Scholar

  • [49] Brück W., Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis, J. Neurol., 2005, 252(Suppl. 5), v10–15 http://dx.doi.org/10.1007/s00415-005-5003-6CrossrefGoogle Scholar

  • [50] Chang A., Nishiyama A., Peterson J., Prineas J., Trapp B. D., NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions, J. Neurosci., 2000, 20, 6404–6412 Google Scholar

  • [51] Scolding N. J., Jones J., Compston D. A., Morgan B. P., Oligodendrocyte susceptibility to injury by T-cell perforin, Immunology, 1990, 70, 6–10 Google Scholar

  • [52] Russell J. H., Ley T. J., Lymphocyte-mediated cytotoxicity, Annu. Rev. Immunol., 2002, 20, 323–370 http://dx.doi.org/10.1146/annurev.immunol.20.100201.131730CrossrefGoogle Scholar

  • [53] Antel J. P., Williams K., Blain M., McRea E., McLaurin J., Oligodendrocyte lysis by CD4+ T cells independent of tumor necrosis factor, Ann. Neurol., 1994, 35, 341–348 http://dx.doi.org/10.1002/ana.410350315CrossrefGoogle Scholar

  • [54] Baumann F., Tolnay M., Brabeck C., Pahnke J., Kloz U., Niemann H. H. et al., Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J., 2007, 26, 538–547 http://dx.doi.org/10.1038/sj.emboj.7601510CrossrefGoogle Scholar

  • [55] Hajj G. N., Lopes M. H., Mercadante A. F., Veiga S. S., da Silveira R. B., Santos T. G. et al., Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins, J. Cell Sci., 2007, 120, 1915–1926 http://dx.doi.org/10.1242/jcs.03459CrossrefGoogle Scholar

  • [56] Albrecht P. J., Murtie J. C., Ness J. K., Redwine J. M., Enterline J. R., Armstrong R. C. et al., Astrocytes produce CNTF during the remyelination phase of viral-induced spinal cord demyelination to stimulate FGF-2 production, Neurobiol. Dis., 2003, 13, 89–101 http://dx.doi.org/10.1016/S0969-9961(03)00019-6Google Scholar

  • [57] Brenneman D. E., Gozes I., A femtomolar-acting neuroprotective peptide, J. Clin. Invest., 1996, 97, 2299–2307 http://dx.doi.org/10.1172/JCI118672CrossrefGoogle Scholar

  • [58] Gozes I., Bassan M., Zamostiano R., Pinhasov A., Davidson A., Giladi E. et al., A novel signaling molecule for neuropeptide action: activitydependent neuroprotective protein, Ann. N Y Acad. Sci., 1999, 897, 125–135 http://dx.doi.org/10.1111/j.1749-6632.1999.tb07884.xCrossrefGoogle Scholar

  • [59] Volterra A., Meldolesi J., Astrocytes, from brain glue to communication elements: the revolution continues, Nat. Rev. Neurosci., 2005, 6, 626–640 http://dx.doi.org/10.1038/nrn1722CrossrefGoogle Scholar

  • [60] Marin-Padilla M., Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: a Golgi study, J. Comp. Neurol., 1995, 357, 554–572 http://dx.doi.org/10.1002/cne.903570407CrossrefGoogle Scholar

  • [61] Liedtke W., Edelmann W., Bieri P. L., Chiu F. C., Cowan N. J., Kucherlapati R. et al., GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination, Neuron, 1996, 17, 607–615 http://dx.doi.org/10.1016/S0896-6273(00)80194-4CrossrefGoogle Scholar

  • [62] Bartlett W. P., Knapp P. E., Skoff R. P., Glial conditioned medium enables jimpy oligodendrocytes to express properties of normal oligodendrocytes: production of myelin antigens and membranes, Glia, 1988, 1, 253–259 http://dx.doi.org/10.1002/glia.440010404CrossrefGoogle Scholar

  • [63] Gay F. W., Early cellular events in multiple sclerosis. Intimations of an extrinsic myelinolytic antigen, Clin. Neurol. Neurosurg., 2006, 108, 234–240 http://dx.doi.org/10.1016/j.clineuro.2005.11.005CrossrefGoogle Scholar

  • [64] Matute C., Domercq M., Sanchez-Gomez M. V., Glutamate-mediated glial injury: mechanisms and clinical importance, Glia, 2006, 53, 212–224 http://dx.doi.org/10.1002/glia.20275CrossrefGoogle Scholar

  • [65] Ambrosini E., Remoli M. E., Giacomini E., Rosicarelli B., Serafini B., Lande R. et al., Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions, J. Neuropathol. Exp. Neurol., 2005, 64, 706–715 http://dx.doi.org/10.1097/01.jnen.0000173893.01929.fcCrossrefGoogle Scholar

  • [66] Seifert G., Schilling K., Steinhauser C., Astrocyte dysfunction in neurological disorders: a molecular perspective, Nat. Rev. Neurosci., 2006, 7, 194–206 http://dx.doi.org/10.1038/nrn1870CrossrefGoogle Scholar

  • [67] Bush T. G., Puvanachandra N., Horner C. H., Polito A., Ostenfeld T., Svendsen C. N. et al., Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice, Neuron, 1999, 23, 297–308 http://dx.doi.org/10.1016/S0896-6273(00)80781-3CrossrefGoogle Scholar

  • [68] Berer K., Mues M., Koutrolos M., Rasbi Z. A., Boziki M., Johner C. et al., Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination, Nature, 2011, 479, 538–541 http://dx.doi.org/10.1038/nature10554CrossrefGoogle Scholar

  • [69] Olson J. K., Ludovic Croxford J., Miller S. D., Innate and adaptive immune requirements for induction of autoimmune demyelinating disease by molecular mimicry, Mol. Immunol., 2004, 40, 1103–1108 http://dx.doi.org/10.1016/j.molimm.2003.11.010CrossrefGoogle Scholar

  • [70] Noseworthy J. H., Progress in determining the causes and treatment of multiple sclerosis, Nature, 1999, 399(Suppl. 6738), A40–47 Google Scholar

  • [71] Haines J. L., Bradford Y., Garcia M. E., Reed A. D., Neumeister E., Pericak-Vance M. A. et al., Multiple susceptibility loci for multiple sclerosis, Hum. Mol. Genet., 2002, 11, 2251–2256 http://dx.doi.org/10.1093/hmg/11.19.2251CrossrefGoogle Scholar

  • [72] Lincoln M. R., Montpetit A., Cader M. Z., Saarela J., Dyment D. A., Tiislar M. et al., A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis, Nat. Genet., 2005, 37, 1108–1112 http://dx.doi.org/10.1038/ng1647CrossrefGoogle Scholar

  • [73] Kenealy S. J., Herrel L. A., Bradford Y., Schnetz-Boutaud N., Oksenberg J. R., Hauser S. L. et al., Examination of seven candidate regions for multiple sclerosis: strong evidence of linkage to chromosome 1q44, Genes Immun., 2006, 7, 73–76 http://dx.doi.org/10.1038/sj.gene.6364275CrossrefGoogle Scholar

  • [74] Vandenbroeck K., Fiten P., Heggarty S., Goris A., Cocco E., Hawkins S. A. et al., Chromosome 7q21-22 and multiple sclerosis: evidence for a genetic susceptibility effect in vicinity to the protachykinin-1 gene, J. Neuroimmunol., 2002, 125, 141–148 http://dx.doi.org/10.1016/S0165-5728(02)00023-1CrossrefGoogle Scholar

  • [75] Palma C., Minghetti L., Astolfi M., Ambrosini E., Silberstein F. C., Manzini S. et al., Functional characterization of substance P receptors on cultured human spinal cord astrocytes: synergism of substance P with cytokines in inducing interleukin-6 and prostaglandin E2 production, Glia, 1997, 21, 183–193 http://dx.doi.org/10.1002/(SICI)1098-1136(199710)21:2<183::AID-GLIA2>3.0.CO;2-8CrossrefGoogle Scholar

  • [76] Lieb K., Fiebich B. L., Berger M., Bauer J., Schulze-Osthoff K., The neuropeptide substance P activates transcription factor NF-kappa B and kappa B-dependent gene expression in human astrocytoma cells, J. Immunol., 1997, 159, 4952–4958 Google Scholar

  • [77] Fiebich B. L., Schleicher S., Butcher R. D., Craig A., Lieb K., The neuropeptide substance P activates p38 mitogen-activated protein kinase resulting in IL-6 expression independently from NF-kappa B, J. Immunol., 2000, 165, 5606–5611 Google Scholar

  • [78] Antony J. M., van Marle G., Opii W., Butterfield D. A., Mallet F., Yong V. W. et al., Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination, Nat. Neurosci., 2004, 7, 1088–1095 http://dx.doi.org/10.1038/nn1319CrossrefGoogle Scholar

  • [79] Stuve O., Wang J., Chan A., Hemmer B., Cepok S., Nessler S. et al., No association between genetic polymorphism at codon 129 of the prion protein gene and primary progressive multiple sclerosis, Arch. Neurol., 68, 264–265 Google Scholar

  • [80] Stuve O., Korth C., Gabatto P., Cameron E. M., Hu W., Eagar T. N. et al., Genetic polymorphism at codon 129 of the prion protein gene is not associated with multiple sclerosis, Arch. Neurol., 2009, 66, 280–281 http://dx.doi.org/10.1001/archneur.66.2.280CrossrefGoogle Scholar

  • [81] Rutishauser D., Mertz K. D., Moos R., Brunner E., Rülicke T., Calella A. M. et al., The comprehensive native interactome of a fully functional tagged prion protein, PLoS One, 2009, 4, e4446 http://dx.doi.org/10.1371/journal.pone.0004446CrossrefGoogle Scholar

About the article

Published Online: 2011-12-28

Published in Print: 2011-12-01

Citation Information: Translational Neuroscience, Volume 2, Issue 4, Pages 351–359, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-011-0042-1.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in