Jump to ContentJump to Main Navigation
Show Summary Details

Translational Neuroscience

Editor-in-Chief: Šimic, Goran

IMPACT FACTOR 2015: 1.012

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286
Impact per Publication (IPP) 2015: 1.155

Open Access
See all formats and pricing

A peptide uncoupling CRMP-2 from the presynaptic Ca2+ channel complex demonstrates efficacy in animal models of migraine and AIDS therapy-induced neuropathy

1Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, USA

2Department of Anesthesia, Indiana University School of Medicine, Indianapolis, USA

3Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA

4Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA

5Sophia Therapeutics LLC, 351 West 10th Street, Indianapolis, Indiana, 46202, USA

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Translational Neuroscience. Volume 3, Issue 1, Pages 1–8, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: 10.2478/s13380-012-0002-4, March 2012

Publication History

Published Online:


Biological, genetic, and clinical data provide compelling proof for N-type voltage-gated calcium channels (CaV2.2) as therapeutic targets for chronic pain. While decreasing channel function is ultimately anti-nociceptive, directly targeting the channel can lead to multiple adverse effects. Targeting regulators of channel activity may facilitate improved analgesic properties associated with channel block and afford a broader therapeutic window. Towards this end, we recently identified a short peptide, designated CBD3, derived from collapsin response mediator protein 2 (CRMP-2) that suppressed inflammatory and neuropathic hypersensitivity by inhibiting CRMP-2 binding to CaV2.2 [Brittain et al., Nature Medicine 17:822–829 (2011)]. Rodents administered CBD3 intraperitoneally, fused to the HIV TAT protein cell penetrating domain, exhibited antinociception lasting ∼4 hours highlighting potential instability, limited oral bioavailability, and/or rapid elimination of peptide. This report focuses on improving upon the parental CBD3 peptide. Using SPOTScan analysis of synthetic versions of the parental CBD3 peptide, we identified peptides harboring single amino acid mutations that bound with greater affinity to CaV2.2. One such peptide, harboring a phenylalanine instead of glycine (G14F), was tested in rodent models of migraine and neuropathic pain. In vivo laser Doppler blood flowmetry measure of capsaicin-induced meningeal vascular responses related to headache pain was almost completely suppressed by dural application of the G14F peptide. The G14F mutant peptide, administered intraperitoneally, also exhibited greater antinociception in Stavudine (2′-3′-didehydro-2′-3′-dideoxythymidine (d4T)/Zerit®) model of AIDS therapy-induced peripheral neuropathy compared to the parent CBD3 peptide. These results demonstrate the patent translational value of small biologic drugs targeting CaV2.2 for management of clinical pain.

Keywords: N-type calcium channel; CRMP-2; Uncoupling peptide; Meningeal blood flow; Migraine model; d4T/Zerit/Stavudine; NTR; AIDS therapy-induced neuropathic pain; Chronic pain

  • [1] Institute of medicine report from the committee on advancing pain research care and education, Relieving pain in America: A blueprint for transforming prevention, care, education and research, The National Academies Press, 2011

  • [2] Snutch T. P., Targeting chronic and neuropathic pain: the N-type calcium channel comes of age, NeuroRx, 2005, 2, 662–670 http://dx.doi.org/10.1602/neurorx.2.4.662 [Crossref]

  • [3] Catterall W. A., Few A. P., Calcium channel regulation and presynaptic plasticity, Neuron, 2008, 59, 882–901 http://dx.doi.org/10.1016/j.neuron.2008.09.005 [Web of Science] [Crossref]

  • [4] Saegusa H., Kurihara T., Zong S., Kazuno A., Matsuda Y., Nonaka T. et al., Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel, EMBO J., 2001, 20, 2349–2356 http://dx.doi.org/10.1093/emboj/20.10.2349 [Crossref]

  • [5] Cizkova D., Marsala J., Lukacova N., Marsala M., Jergova S., Orendacova J. et al., Localization of N-type Ca2+ channels in the rat spinal cord following chronic constrictive nerve injury, Exp. Brain Res., 2002, 147, 456–463 http://dx.doi.org/10.1007/s00221-002-1217-3 [Crossref]

  • [6] Bell T. J., Thaler C., Castiglioni A. J., Helton T. D., Lipscombe D., Cellspecific alternative splicing increases calcium channel current density in the pain pathway, Neuron, 2004, 41, 127–138 http://dx.doi.org/10.1016/S0896-6273(03)00801-8 [Crossref]

  • [7] Altier C., Dale C. S., Kisilevsky A. E., Chapman K., Castiglioni A. J., Matthews E. A. et al., Differential role of N-type calcium channel splice isoforms in pain, J. Neurosci., 2007, 27, 6363–6373 http://dx.doi.org/10.1523/JNEUROSCI.0307-07.2007 [Crossref]

  • [8] Zamponi G. W., Feng Z. P., Zhang L., Pajouhesh H., Ding Y., Belardetti F. et al. Scaffold-based design and synthesis of potent N-type calcium channel blockers, Bioorg. Med. Chem. Lett., 2009, 19, 6467–6472 http://dx.doi.org/10.1016/j.bmcl.2009.09.008 [Crossref]

  • [9] Zamponi G. W., Lewis R. J., Todorovic S. M., Arneric S. P., Snutch T. P., Role of voltage-gated calcium channels in ascending pain pathways, Brain Res. Rev., 2009, 60, 84–89 http://dx.doi.org/10.1016/j.brainresrev.2008.12.021 [Web of Science] [Crossref]

  • [10] Swensen A. M., Herrington J., Bugianesi R. M., Dai G., Haedo R. J., Ratliff K. S. et al., Characterization of the substituted N-triazole oxindole, TROX-1, a small molecule, state-dependent inhibitor of CaV2 calcium channels, Mol. Pharmacol., 2011 epub ahead of print

  • [11] Abbadie C., McManus O. B., Sun S. Y., Bugianesi R. M., Dai G., Haedo R. J. et al., Analgesic effects of a substituted N-triazole oxindole (TROX-1), a state-dependent, voltage-gated calcium channel 2 blocker, J. Pharmacol. Exp. Ther., 2010, 334, 545–555 http://dx.doi.org/10.1124/jpet.110.166363 [Crossref] [Web of Science]

  • [12] Bauer C. S., Nieto-Rostro M., Rahman W., Tran-Van-Minh A., Ferron L., Douglas L. et al., The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin, J. Neurosci., 2009, 29, 4076–4088 http://dx.doi.org/10.1523/JNEUROSCI.0356-09.2009 [Web of Science]

  • [13] Brittain J. M., Piekarz A. D., Wang Y., Kondo T., Cummins T. R., Khanna R., An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltagegated Ca2+ channels, J. Biol. Chem., 2009, 284, 31375–31390 http://dx.doi.org/10.1074/jbc.M109.009951 [Web of Science] [Crossref]

  • [14] Chi X. X., Schmutzler B. S., Brittain J. M., Hingtgen C. M., Nicol G. D., Khanna R., Regulation of N-type voltage-gated calcium (CaV2.2) channels and transmitter release by collapsin response mediator protein-2 (CRMP-2) in sensory neurons, J. Cell. Sci., 2009, 23, 4351–4362 http://dx.doi.org/10.1242/jcs.053280 [Web of Science] [Crossref]

  • [15] Hensley K., Venkova K., Christov A., Gunning W., Park J., Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications, Mol. Neurobiol., 2011, 43, 180–191 http://dx.doi.org/10.1007/s12035-011-8166-4 [Crossref] [Web of Science]

  • [16] Inagaki N., Chihara K., Arimura N., Ménager C., Kawano Y., Matsuo N. et al., CRMP-2 induces axons in cultured hippocampal neurons, Nat. Neurosci., 2001, 4, 781–782 http://dx.doi.org/10.1038/90476 [Crossref]

  • [17] Arimura N., Hattori A., Kimura T., Nakamuta S., Funahashi Y., Hirotsune S. et al., CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity, J. Neurochem., 2009, 111, 380–390 http://dx.doi.org/10.1111/j.1471-4159.2009.06317.x [Web of Science] [Crossref]

  • [18] Morita T., Sobue K., Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway, J. Biol. Chem., 2009, 284, 27734–27745 http://dx.doi.org/10.1074/jbc.M109.008177 [Web of Science]

  • [19] Yoshimura T., Kawano Y., Arimura N., Kawabata S., Kikuchi A., Kaibuchi K., GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity, Cell, 2005, 120, 137–149 http://dx.doi.org/10.1016/j.cell.2004.11.012 [Crossref]

  • [20] Wang Y., Brittain J. M., Wilson S. M., Khanna R., Emerging roles of collapsin response mediator proteins (CRMPs) as regulators of voltage-gated calcium channels and synaptic transmission, Commun. Integr. Biol., 2010, 3, 1–4 http://dx.doi.org/10.4161/cib.3.1.9694 [Crossref]

  • [21] Brittain J. M., Duarte D. B., Wilson S. M., Zhu W., Ballard C., Johnson P. L. et al., Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca(2+) channel complex, Nat. Med., 2011, 17, 822–829 http://dx.doi.org/10.1038/nm.2345 [Web of Science]

  • [22] Wilson S. M., Brittain J. M., Piekarz A. D., Ballard C. J., Ripsch M. S., Cummins T. R. et al., Further insights into the antinociceptive potential of a peptide disrupting the N-type calcium channel-CRMP-2 signaling complex, Channels (Austin), 2011, 5, 449–456 http://dx.doi.org/10.4161/chan.5.5.17363 [Web of Science] [Crossref]

  • [23] Kurosawa M., Messlinger K., Pawlak M., Schmidt R. F., Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide, Br. J. Pharmacol., 1995, 114, 1397–1402

  • [24] Gottselig R., Messlinger K., Noxious chemical stimulation of rat facial mucosa increases intracranial blood flow through a trigemino-parasympathetic reflex—an experimental model for vascular dysfunctions in cluster headache, Cephalalgia, 2004, 24, 206–214 http://dx.doi.org/10.1111/j.1468-2982.2004.00649.x [Crossref]

  • [25] Joseph E. K., Chen X., Khasar S. G., Levine J. D., Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat, Pain, 2004, 107, 147–158 http://dx.doi.org/10.1016/j.pain.2003.10.010 [Crossref]

  • [26] LaMotte R. H., Friedman R. M., Lu C., Khalsa P. S., Srinivasan M. A., Raised object on a planar surface stroked across the fingerpad: responses of cutaneous mechanoreceptors to shape and orientation, J. Neurophysiol., 1998, 80, 2446–2466

  • [27] Ma C., Shu Y., Zheng Z., Chen Y., Yao H., Greenquist K. W. et al., Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons, J. Neurophysiol., 2003, 89, 1588–1602 http://dx.doi.org/10.1152/jn.00855.2002 [Crossref]

  • [28] Goadsby P. J., Calcitonin gene-related peptide (CGRP) antagonists and migraine: is this a new era?, Neurology, 2008, 70, 1300–1301 http://dx.doi.org/10.1212/01.wnl.0000309214.25038.fd [Crossref]

  • [29] Olesen J., Diener H. C., Husstedt I. W., Goadsby P. J., Hall D., Meier U. et al., Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine, N. Engl. J. Med., 2004, 350, 1104–1110 http://dx.doi.org/10.1056/NEJMoa030505 [Crossref]

  • [30] Xiao Y., Richter J. A., Hurley J. H., Release of glutamate and CGRP from trigeminal ganglion neurons: Role of calcium channels and 5-HT1 receptor signaling, Mol. Pain, 2008, 4, 12 http://dx.doi.org/10.1186/1744-8069-4-12 [Web of Science]

  • [31] Kunkler P. E., Ballard C. J., Oxford G. S., Hurley J. H., TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation, Pain, 2011, 152, 38–44 http://dx.doi.org/10.1016/j.pain.2010.08.021 [Web of Science]

  • [32] Bhangoo S. K., Ripsch M. S., Buchanan D. J., Miller R. J., White F. A., Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy, Mol. Pain, 2009, 5, 48 http://dx.doi.org/10.1186/1744-8069-5-48

  • [33] Westenbroek R. E., Hoskins L., Catterall W. A.. Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals, J. Neurosci., 1998, 18, 6319–6330

  • [34] Kerr L. M., Filloux F., Olivera B. M., Jackson H., Wamsley J. K., Autoradiographic localization of calcium channels with [125I] omega-conotoxin in rat brain, Eur. J. Pharmacol., 1988, 146, 181–183 http://dx.doi.org/10.1016/0014-2999(88)90501-8 [Crossref]

  • [35] Heinke B., Balzer E., Sandkuhler J., Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons, Eur. J. Neurosci., 2004, 19, 103–111 http://dx.doi.org/10.1046/j.1460-9568.2003.03083.x [Crossref]

  • [36] Akerman S., Williamson D. J., Goadsby P. J., Voltage-dependent calcium channels are involved in neurogenic dural vasodilatation via a presynaptic transmitter release mechanism, Br. J. Pharmacol., 2003, 140, 558–566 http://dx.doi.org/10.1038/sj.bjp.0705456 [Crossref]

  • [37] Dux M., Santha P., Jancso G., Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat, J. Physiol., 2003, 552, 859–867 http://dx.doi.org/10.1113/jphysiol.2003.050633 [Crossref]

  • [38] Zimmermann K., Reeh P. W., Averbeck B., S+ -flurbiprofen but not 5-HT1 agonists suppress basal and stimulated CGRP and PGE2 release from isolated rat dura mater, Pain, 2003, 103, 313–320 http://dx.doi.org/10.1016/S0304-3959(02)00459-1 [Crossref]

  • [39] Peitl B., Petho G., Porszasz R., Nemeth J., Szolcsanyi J., Capsaicininsensitive sensory-efferent meningeal vasodilatation evoked by electrical stimulation of trigeminal nerve fibres in the rat, Br. J. Pharmacol., 1999, 127, 457–467 http://dx.doi.org/10.1038/sj.bjp.0702561 [Crossref]

  • [40] Eikermann-Haerter K., Moskowitz M. A., Animal models of migraine headache and aura, Curr. Opin. Neurol., 2008, 21, 294–300 http://dx.doi.org/10.1097/WCO.0b013e3282fc25de [Crossref]

  • [41] Reuter U., Sanchez del R. M., Moskowitz M. A., Experimental models of migraine, Funct. Neurol., 2000, 15(Suppl 3), 9–18

  • [42] Panconesi A., Bartolozzi M. L., Guidi L., Migraine pain: reflections against vasodilatation, J. Headache Pain, 2009, 10, 317–325 http://dx.doi.org/10.1007/s10194-009-0130-6 [Crossref]

  • [43] Strassman A. M., Levy D., Response properties of dural nociceptors in relation to headache, J. Neurophysiol., 2006, 95, 1298–1306 http://dx.doi.org/10.1152/jn.01293.2005 [Crossref]

  • [44] Moyle G. J., Sadler M., Peripheral neuropathy with nucleoside antiretrovirals: risk factors, incidence and management, Drug Saf., 1998, 19, 481–494 http://dx.doi.org/10.2165/00002018-199819060-00005 [Crossref]

  • [45] Deo R. C., Schmidt E. F., Elhabazi A., Togashi H., Burley S. K., Strittmatter S. M., Structural bases for CRMP function in plexin-dependent semaphorin3A signaling, EMBO J., 2004, 23, 9–22 http://dx.doi.org/10.1038/sj.emboj.7600021 [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Liberty François-Moutal, Yue Wang, Aubin Moutal, Karissa E. Cottier, Ohannes K. Melemedjian, Xiaofang Yang, Yuying Wang, Weina Ju, Tally M. Largent-Milnes, May Khanna, Todd W. Vanderah, and Rajesh Khanna
PAIN, 2015, Volume 156, Number 7, Page 1247
T T Quach, J Honnorat, P E Kolattukudy, R Khanna, and A M Duchemin
Molecular Psychiatry, 2015
Bruno P. Meloni, Diego Milani, Adam B. Edwards, Ryan S. Anderton, Ryan L. O’Hare Doig, Melinda Fitzgerald, T. Norman Palmer, and Neville W. Knuckey
Pharmacology & Therapeutics, 2015
Aubin Moutal, Liberty François-Moutal, Joel M. Brittain, May Khanna, and Rajesh Khanna
Frontiers in Cellular Neuroscience, 2015, Volume 8
G Fischer, B Pan, D Vilceanu, Q H Hogan, and H Yu
Gene Therapy, 2014, Volume 21, Number 1, Page 44
Weina Ju, Qi Li, Sarah M. Wilson, Joel M. Brittain, Louay Meroueh, and Rajesh Khanna
Channels, 2013, Volume 7, Number 3, Page 153
Wenlong Huang, Margarita Calvo, Kersti Karu, Hans R. Olausen, Gabriella Bathgate, Kenji Okuse, David L.H. Bennett, and Andrew S.C. Rice
Pain, 2013, Volume 154, Number 4, Page 560
Weina Ju, Qi Li, Yohance M. Allette, Matthew S. Ripsch, Fletcher A. White, and Rajesh Khanna
Journal of Neurochemistry, 2013, Volume 124, Number 6, Page 869
Justin McArthur and Bryan Smith
Current Infectious Disease Reports, 2013, Volume 15, Number 1, Page 61
Andrew D Piekarz, Michael R Due, May Khanna, Bo Wang, Matthew S Ripsch, Ruizhong Wang, Samy O Meroueh, Michael R Vasko, Fletcher A White, and Rajesh Khanna
Molecular Pain, 2012, Volume 8, Number 1, Page 54
Rajesh Khanna, Sarah M Wilson, Joel M Brittain, Jill Weimer, Rukhsana Sultana, Allan Butterfield, and Kenneth Hensley
Future Neurology, 2012, Volume 7, Number 6, Page 749
Joel M. Brittain, Yuying Wang, Omotore Eruvwetere, and Rajesh Khanna
FEBS Letters, 2012, Volume 586, Number 21, Page 3813

Comments (0)

Please log in or register to comment.