Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

Diffuse disconnectivity in traumatic brain injury: a resting state fMRI and DTI study

Cheuk Tang
  • Department of Radiology, Mount Sinai School of Medicine, New York, NY, 10029, USA
  • Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, 10029, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emily Eaves / Kristen Dams-O’Connor / Lap Ho / Eric Leung / Edmund Wong / David Carpenter / Johnny Ng / Wayne Gordon / Giulio Pasinetti
  • Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, 10029, USA
  • Department of Neurology, Mount Sinai School of Medicine, New York, NY, 10029, USA
  • James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-03-14 | DOI: https://doi.org/10.2478/s13380-012-0003-3


Diffuse axonal injury is a common pathological consequence of Traumatic Brain Injury (TBI). Diffusion Tensor Imaging is an ideal technique to study white matter integrity using the Fractional Anisotropy (FA) index which is a measure of axonal integrity and coherence. There have been several reports showing reduced FA in individuals with TBI, which suggest demyelination or reduced fiber density in white matter tracts secondary to injury. Individuals with TBI are usually diagnosed with cognitive deficits such as reduced attention span, memory and executive function. In this study we sought to investigate correlations between brain functional networks, white matter integrity, and TBI severity in individuals with TBI ranging from mild to severe. A resting state functional magnetic resonance imaging protocol was used to study the default mode network in subjects at rest. FA values were decreased throughout all white matter tracts in the mild to severe TBI subjects. FA values were also negatively correlated with TBI injury severity ratings. The default mode network showed several brain regions in which connectivity measures were higher among individuals with TBI relative to control subjects. These findings suggest that, subsequent to TBI, the brain may undergo adaptation responses at the cellular level to compensate for functional impairment due to axonal injury.

Keywords: Traumatic Brain Injury (TBI); Functional magnetic resonance imaging (fMRI); DTI; Cognitive Function

  • [1] Huisman T. A., Schwamm L. H., Schaefer P. W., Koroshetz W. J., Shetty-Alva N., Ozsunar Y. et al., Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury, AJNR Am. J. Neuroradiol., 2004, 25, 370–376 Google Scholar

  • [2] Scheid R., Walther K., Guthke T., Preul C., von Cramon D. Y., Cognitive sequelae of diffuse axonal injury, Arch. Neurol., 2006, 63, 418–424 http://dx.doi.org/10.1001/archneur.63.3.418CrossrefGoogle Scholar

  • [3] Kou Z., Wu Z., Tong K. A., Holshouser B., Benson R. R., Hu J. et al., The role of advanced MR imaging findings as biomarkers of traumatic brain injury, J. Head Trauma Rehabil., 2010, 25, 267–282 http://dx.doi.org/10.1097/HTR.0b013e3181e54793CrossrefGoogle Scholar

  • [4] McDowell S., Whyte J., D’Esposito M., Working memory impairments in traumatic brain injury: evidence from a dual-task paradigm, Neuropsychologia, 1997, 35, 1341–1353 http://dx.doi.org/10.1016/S0028-3932(97)00082-1CrossrefGoogle Scholar

  • [5] Arciniegas D. B., Held K., Wagner P., Cognitive Impairment Following Traumatic Brain Injury, Curr. Treat. Options Neurol., 2002, 4, 43–57 http://dx.doi.org/10.1007/s11940-002-0004-6CrossrefGoogle Scholar

  • [6] Schretlen D. J., Shapiro A. M., A quantitative review of the effects of traumatic brain injury on cognitive functioning, Int. Rev. Psychiatry, 2003, 15, 341–349 http://dx.doi.org/10.1080/09540260310001606728CrossrefGoogle Scholar

  • [7] Hughes D. G., Jackson A., Mason D. L., Berry E., Hollis S., Yates D. W., Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery, Neuroradiology, 2004, 46, 550–558 Google Scholar

  • [8] Guskiewicz K. M., Marshall S. W., Bailes J., McCrea M., Cantu R. C., Randolph C. et al., Association between recurrent concussion and late-life cognitive impairment in retired professional football players, Neurosurgery, 2005, 57, 719–726 http://dx.doi.org/10.1227/01.NEU.0000175725.75780.DDCrossrefGoogle Scholar

  • [9] Basser P. J., Pajevic S., Pierpaoli C., Duda J., Aldroubi A., In vivo fiber tractography using DT-MRI data, Magn. Reson. Med., 2000, 44, 625–632 http://dx.doi.org/10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-OCrossrefGoogle Scholar

  • [10] Wozniak J. R., Krach L., Ward E., Mueller B. A., Muetzel R., Schnoebelen S. et al., Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: A diffusion tensor imaging (DTI) study, Arch. Clin. Neuropsychol., 2007, 22, 555–568 http://dx.doi.org/10.1016/j.acn.2007.03.004Web of ScienceCrossrefGoogle Scholar

  • [11] Rutgers D. R., Toulgoat F., Cazejust J., Fillard P., Lasjaunias P., Ducreux D., White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study, AJNR Am. J. Neuroradiol., 2008, 29, 514–519 http://dx.doi.org/10.3174/ajnr.A0856CrossrefGoogle Scholar

  • [12] Ogawa S., Lee T. M., Kay A. R., Tank D. W., Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA, 1990, 87, 9868–9872 http://dx.doi.org/10.1073/pnas.87.24.9868CrossrefGoogle Scholar

  • [13] McAllister T. W., Saykin A. J., Flashman L. A., Sparkling M. B., Johnson S. C., Mamourian A. C. et al., Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study, Neurology, 1999, 53, 1300–1308 Google Scholar

  • [14] Scheibel R. S., Pearson D. A., Faria L. P., Kotrla K. J., Aylward E., Bachevalier J. et al., An fMRI study of executive functioning after severe diffuse TBI, Brain Inj., 2003, 17, 919–930 http://dx.doi.org/10.1080/0269905031000110472CrossrefGoogle Scholar

  • [15] Azouvi P., Couillet J., Leclercq M., Martin Y., Asloun S., Rousseaux M., Divided attention and mental effort after severe traumatic brain injury, Neuropsychologia, 2004, 42, 1260–1268 http://dx.doi.org/10.1016/j.neuropsychologia.2004.01.001CrossrefGoogle Scholar

  • [16] Maruishi M., Miyatani M., Nakao T., Muranaka H., Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatry, 2007, 78, 168–173 http://dx.doi.org/10.1136/jnnp.2006.097345CrossrefWeb of ScienceGoogle Scholar

  • [17] Haier R. J., Cerebral glucose metabolism and intelligence, In: Biological approaches to the study of human intelligence, Norwood, NJ: Ablex, 1993, 317–332 Google Scholar

  • [18] Tang C. Y., Eaves E. L., Ng J. C., Carpenter D. M., Kanellopoulou I., Mai X. et al., Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI, Intelligence, 2010, 38, 293–303 http://dx.doi.org/10.1016/j.intell.2010.03.003CrossrefWeb of ScienceGoogle Scholar

  • [19] Greicius M. D., Krasnow B., Reiss A. L., Menon V., Functional connectivity in the resting brain: A network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. USA, 2003, 100, 253–258 http://dx.doi.org/10.1073/pnas.0135058100CrossrefGoogle Scholar

  • [20] Damoiseaux J. S., Rombouts S. A., Barkhof F., Scheltens P., Stam C. J., Smith S. M. et al., Consistent resting-state networks across healthy subjects, Proc. Natl. Acad. Sci. USA, 2006, 103, 13848–13853 http://dx.doi.org/10.1073/pnas.0601417103CrossrefGoogle Scholar

  • [21] De Luca M., Beckmann C. F., De Stefano N., Matthews P. M., Smith S. M., fMRI resting state networks define distinct modes of longdistance interactions in the human brain, Neuroimage, 2006, 29, 1359–1367 http://dx.doi.org/10.1016/j.neuroimage.2005.08.035CrossrefGoogle Scholar

  • [22] MacDonald C. L., Schwarze N., Vaishnavi S. N., Epstein A. A., Snyder A. Z., Raichle M. E. et al., Verbal memory deficit following traumatic brain injury: assessment using advanced MRI methods, Neurology, 2008, 71, 1199–1201 http://dx.doi.org/10.1212/01.wnl.0000327521.69520.7fCrossrefGoogle Scholar

  • [23] Nakamura T., Hillary F. G., Biswal B. B., Resting network plasticity following brain injury, Plos One, 2009, 4, e8220 http://dx.doi.org/10.1371/journal.pone.0008220CrossrefGoogle Scholar

  • [24] Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E. et al., Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data, Neuroimage, 2006, 31, 1487–1505 http://dx.doi.org/10.1016/j.neuroimage.2006.02.024CrossrefGoogle Scholar

  • [25] Smith S. M., Nichols T. E., Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference, Neuroimage, 2009, 44, 83–98 http://dx.doi.org/10.1016/j.neuroimage.2008.03.061CrossrefWeb of ScienceGoogle Scholar

  • [26] Beckmann C. F., Smith S. M., Probabilistic independent component analysis for functional magnetic resonance imaging, IEEE Trans. Med. Imaging, 2004, 23, 137–152 http://dx.doi.org/10.1109/TMI.2003.822821CrossrefGoogle Scholar

  • [27] Benson R. R., Meda S. A., Vasudevan S., Kou Z., Govindarajan K. A., Hanks R. A. et al., Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury, J. Neurotraum., 2007, 24, 446–459 http://dx.doi.org/10.1089/neu.2006.0153CrossrefGoogle Scholar

  • [28] Xu J., Rasmussen I. A., Lagopoulos J., Håberg A., Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging, J. Neurotraum., 2007, 24, 753–765 http://dx.doi.org/10.1089/neu.2006.0208CrossrefGoogle Scholar

  • [29] Nobuhara K., Okugawa G., Sugimoto T., Minami T., Tamagaki C., Takase K. et al., Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study, J. Neurol. Neurosurg. Psychiatry, 2006, 77, 120–122 http://dx.doi.org/10.1136/jnnp.2004.055129CrossrefGoogle Scholar

  • [30] Herrmann L. L., Le Masurier M., Ebmeier K. P., White matter hyperintensities in late life depression: a systematic review, J. Neurol. Neurosurg. Psychiatry, 2008, 79, 619–624 http://dx.doi.org/10.1136/jnnp.2007.124651Web of ScienceCrossrefGoogle Scholar

  • [31] Greicius M. D., Srivastava G., Reiss A. L., Menon V., Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI, Proc. Natl. Acad. Sci. USA, 2004, 101, 4637–4642 http://dx.doi.org/10.1073/pnas.0308627101CrossrefGoogle Scholar

  • [32] Sorg C., Riedl V., Mühlau M., Calhoun V. D., Eichele T., Läer L. et al., Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2007, 104, 18760–18765 http://dx.doi.org/10.1073/pnas.0708803104CrossrefGoogle Scholar

  • [33] Liang M., Zhou Y., Jiang T., Liu Z., Tian L., Liu H. et al., Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging, Neuroreport, 2006, 17, 209–213 http://dx.doi.org/10.1097/01.wnr.0000198434.06518.b8CrossrefGoogle Scholar

  • [34] Cherkassky V. L., Kana R. K., Keller T. A., Just M. A., Functional connectivity in a baseline resting-state network in autism, Neuroreport, 2006, 17, 1687–1690 http://dx.doi.org/10.1097/01.wnr.0000239956.45448.4cCrossrefGoogle Scholar

  • [35] Haier R. J., Siegel B. V. Jr., MacLachlan A., Soderling E., Lottenberg S., Buchsbaum M. S., Regional glucose metabolic changes after learning a complex visuospatial motor task — a positron emission tomographic study, Brain Res., 1992, 570, 134–143 http://dx.doi.org/10.1016/0006-8993(92)90573-RCrossrefGoogle Scholar

  • [36] Davis S. W., Dennis N. A., Daselaar S. M., Fleck M. S., Cabeza R., Que PASA? The posterior-anterior shift in aging, Cereb. Cortex, 2008, 18, 1201–1209 http://dx.doi.org/10.1093/cercor/bhm155Web of ScienceCrossrefGoogle Scholar

  • [37] Damoiseaux J. S., Prater K. E., Miller B. L., Greicius M. D., Functional connectivity tracks clinical deterioration in Alzheimer’s disease, Neurobiol. Aging, 2011, epub ahead of print Google Scholar

  • [38] Qi Z. G., Wu X., Wang Z., Zhang N., Dong H., Yao L. et al., Impairment and compensation coexist in amnestic MCI default mode network, Neuroimage, 2010, 50, 48–55 http://dx.doi.org/10.1016/j.neuroimage.2009.12.025CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2012-03-14

Published in Print: 2012-03-01

Citation Information: Translational Neuroscience, Volume 3, Issue 1, Pages 9–14, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-012-0003-3.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ming Song, Yujin Zhang, Yue Cui, Yi Yang, and Tianzi Jiang
Neuroscience Bulletin, 2018
Berkan Solmaz, Birkan Tunç, Drew Parker, John Whyte, Tessa Hart, Amanda Rabinowitz, Morgan Rohrbach, Junghoon Kim, and Ragini Verma
Human Brain Mapping, 2017, Volume 38, Number 6, Page 2913
Laura Moreno-López, Anne E. Manktelow, Barbara J. Sahakian, David K. Menon, and Emmanuel A. Stamatakis
European Neuropsychopharmacology, 2017, Volume 27, Number 2, Page 159
Chandler Sours, Prashant Raghavan, Alexandre E. Medina, Steven Roys, Li Jiang, Jiachen Zhuo, and Rao P. Gullapalli
Journal of Neurotrauma, 2017, Volume 34, Number 7, Page 1473
Ming-Xiong Huang, Deborah L. Harrington, Ashley Robb Swan, Annemarie Angeles Quinto, Sharon Nichols, Angela Drake, Tao Song, Mithun Diwakar, Charles W. Huang, Victoria B. Risbrough, Anders Dale, Hauke Bartsch, Scott Matthews, Jeffrey W. Huang, Roland R. Lee, and Dewleen G. Baker
Journal of Neurotrauma, 2017, Volume 34, Number 7, Page 1412
Skadi Wilke, Jonathan List, Ralf Mekle, Robert Lindenberg, Martin Bukowski, Stefanie Ott, Florian Schubert, Bernd Ittermann, and Agnes Flöel
Journal of Neurotrauma, 2017, Volume 34, Number 2, Page 281
Laura Moreno-López, Barbara J. Sahakian, Anne Manktelow, David K. Menon, and Emmanuel A. Stamatakis
Brain Injury, 2016, Volume 30, Number 11, Page 1319
John A. Wolf and Paul F. Koch
Frontiers in Systems Neuroscience, 2016, Volume 10
Cheuk Ying Tang and Ramachandran Ramani
International Anesthesiology Clinics, 2016, Volume 54, Number 1, Page 143
Catherine A. Orr, Matthew D. Albaugh, Richard Watts, Hugh Garavan, Trevor Andrews, Joshua P. Nickerson, Jay Gonyea, Scott Hipko, Cole Zweber, Katherine Logan, and James J. Hudziak
Journal of Neurotrauma, 2016, Volume 33, Number 9, Page 803
Kristoffer Romero, Nancy J. Lobaugh, Sandra E. Black, Lisa Ehrlich, and Anthony Feinstein
Psychiatry Research: Neuroimaging, 2015, Volume 231, Number 1, Page 15
Naznin Virji-Babul, Courtney G.E. Hilderman, Nadia Makan, Aiping Liu, Jenna Smith-Forrester, Chris Franks, and Z.J. Wang
Journal of Neurotrauma, 2014, Volume 31, Number 23, Page 1914
Michelle E. Costanzo, Yi-Yu Chou, Suzanne Leaman, Dzung L. Pham, David Keyser, Dominic E. Nathan, Mary Coughlin, Paul Rapp, and Michael J. Roy
Neuroscience Letters, 2014, Volume 577, Page 11
Erin D. Bigler
Neuropsychology Review, 2013, Volume 23, Number 3, Page 169
Jun Wang, Cheuk Tang, Mario G. Ferruzzi, Bing Gong, Brian J. Song, Elsa M. Janle, Tzu-Ying Chen, Bruce Cooper, Merina Varghese, Alice Cheng, Daniel Freire, Amanda Bilski, Jessica Roman, Tuyen Nguyen, Lap Ho, Stephen T. Talcott, James E. Simon, Qingli Wu, and Giulio M. Pasinetti
Molecular Nutrition & Food Research, 2013, Volume 57, Number 12, Page 2091
Cheuk Ying Tang, Jagat Narula, and Joseph I. Friedman
Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, 2012, Volume 79, Number 6, Page 674

Comments (0)

Please log in or register to comment.
Log in