Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 14, 2012

Diffuse disconnectivity in traumatic brain injury: a resting state fMRI and DTI study

  • Cheuk Tang EMAIL logo , Emily Eaves , Kristen Dams-O’Connor , Lap Ho , Eric Leung , Edmund Wong , David Carpenter , Johnny Ng , Wayne Gordon and Giulio Pasinetti

Abstract

Diffuse axonal injury is a common pathological consequence of Traumatic Brain Injury (TBI). Diffusion Tensor Imaging is an ideal technique to study white matter integrity using the Fractional Anisotropy (FA) index which is a measure of axonal integrity and coherence. There have been several reports showing reduced FA in individuals with TBI, which suggest demyelination or reduced fiber density in white matter tracts secondary to injury. Individuals with TBI are usually diagnosed with cognitive deficits such as reduced attention span, memory and executive function. In this study we sought to investigate correlations between brain functional networks, white matter integrity, and TBI severity in individuals with TBI ranging from mild to severe. A resting state functional magnetic resonance imaging protocol was used to study the default mode network in subjects at rest. FA values were decreased throughout all white matter tracts in the mild to severe TBI subjects. FA values were also negatively correlated with TBI injury severity ratings. The default mode network showed several brain regions in which connectivity measures were higher among individuals with TBI relative to control subjects. These findings suggest that, subsequent to TBI, the brain may undergo adaptation responses at the cellular level to compensate for functional impairment due to axonal injury.

[1] Huisman T. A., Schwamm L. H., Schaefer P. W., Koroshetz W. J., Shetty-Alva N., Ozsunar Y. et al., Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury, AJNR Am. J. Neuroradiol., 2004, 25, 370–376 Search in Google Scholar

[2] Scheid R., Walther K., Guthke T., Preul C., von Cramon D. Y., Cognitive sequelae of diffuse axonal injury, Arch. Neurol., 2006, 63, 418–424 http://dx.doi.org/10.1001/archneur.63.3.41810.1001/archneur.63.3.418Search in Google Scholar

[3] Kou Z., Wu Z., Tong K. A., Holshouser B., Benson R. R., Hu J. et al., The role of advanced MR imaging findings as biomarkers of traumatic brain injury, J. Head Trauma Rehabil., 2010, 25, 267–282 http://dx.doi.org/10.1097/HTR.0b013e3181e5479310.1097/HTR.0b013e3181e54793Search in Google Scholar

[4] McDowell S., Whyte J., D’Esposito M., Working memory impairments in traumatic brain injury: evidence from a dual-task paradigm, Neuropsychologia, 1997, 35, 1341–1353 http://dx.doi.org/10.1016/S0028-3932(97)00082-110.1016/S0028-3932(97)00082-1Search in Google Scholar

[5] Arciniegas D. B., Held K., Wagner P., Cognitive Impairment Following Traumatic Brain Injury, Curr. Treat. Options Neurol., 2002, 4, 43–57 http://dx.doi.org/10.1007/s11940-002-0004-610.1007/s11940-002-0004-6Search in Google Scholar

[6] Schretlen D. J., Shapiro A. M., A quantitative review of the effects of traumatic brain injury on cognitive functioning, Int. Rev. Psychiatry, 2003, 15, 341–349 http://dx.doi.org/10.1080/0954026031000160672810.1080/09540260310001606728Search in Google Scholar

[7] Hughes D. G., Jackson A., Mason D. L., Berry E., Hollis S., Yates D. W., Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery, Neuroradiology, 2004, 46, 550–558 10.1007/s00234-004-1227-xSearch in Google Scholar

[8] Guskiewicz K. M., Marshall S. W., Bailes J., McCrea M., Cantu R. C., Randolph C. et al., Association between recurrent concussion and late-life cognitive impairment in retired professional football players, Neurosurgery, 2005, 57, 719–726 http://dx.doi.org/10.1227/01.NEU.0000175725.75780.DD10.1227/01.NEU.0000175725.75780.DDSearch in Google Scholar

[9] Basser P. J., Pajevic S., Pierpaoli C., Duda J., Aldroubi A., In vivo fiber tractography using DT-MRI data, Magn. Reson. Med., 2000, 44, 625–632 http://dx.doi.org/10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-OSearch in Google Scholar

[10] Wozniak J. R., Krach L., Ward E., Mueller B. A., Muetzel R., Schnoebelen S. et al., Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: A diffusion tensor imaging (DTI) study, Arch. Clin. Neuropsychol., 2007, 22, 555–568 http://dx.doi.org/10.1016/j.acn.2007.03.00410.1016/j.acn.2007.03.004Search in Google Scholar

[11] Rutgers D. R., Toulgoat F., Cazejust J., Fillard P., Lasjaunias P., Ducreux D., White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study, AJNR Am. J. Neuroradiol., 2008, 29, 514–519 http://dx.doi.org/10.3174/ajnr.A085610.3174/ajnr.A0856Search in Google Scholar

[12] Ogawa S., Lee T. M., Kay A. R., Tank D. W., Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA, 1990, 87, 9868–9872 http://dx.doi.org/10.1073/pnas.87.24.986810.1073/pnas.87.24.9868Search in Google Scholar PubMed PubMed Central

[13] McAllister T. W., Saykin A. J., Flashman L. A., Sparkling M. B., Johnson S. C., Mamourian A. C. et al., Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study, Neurology, 1999, 53, 1300–1308 10.1212/WNL.53.6.1300Search in Google Scholar PubMed

[14] Scheibel R. S., Pearson D. A., Faria L. P., Kotrla K. J., Aylward E., Bachevalier J. et al., An fMRI study of executive functioning after severe diffuse TBI, Brain Inj., 2003, 17, 919–930 http://dx.doi.org/10.1080/026990503100011047210.1080/0269905031000110472Search in Google Scholar PubMed

[15] Azouvi P., Couillet J., Leclercq M., Martin Y., Asloun S., Rousseaux M., Divided attention and mental effort after severe traumatic brain injury, Neuropsychologia, 2004, 42, 1260–1268 http://dx.doi.org/10.1016/j.neuropsychologia.2004.01.00110.1016/j.neuropsychologia.2004.01.001Search in Google Scholar PubMed

[16] Maruishi M., Miyatani M., Nakao T., Muranaka H., Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatry, 2007, 78, 168–173 http://dx.doi.org/10.1136/jnnp.2006.09734510.1136/jnnp.2006.097345Search in Google Scholar PubMed PubMed Central

[17] Haier R. J., Cerebral glucose metabolism and intelligence, In: Biological approaches to the study of human intelligence, Norwood, NJ: Ablex, 1993, 317–332 Search in Google Scholar

[18] Tang C. Y., Eaves E. L., Ng J. C., Carpenter D. M., Kanellopoulou I., Mai X. et al., Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI, Intelligence, 2010, 38, 293–303 http://dx.doi.org/10.1016/j.intell.2010.03.00310.1016/j.intell.2010.03.003Search in Google Scholar

[19] Greicius M. D., Krasnow B., Reiss A. L., Menon V., Functional connectivity in the resting brain: A network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. USA, 2003, 100, 253–258 http://dx.doi.org/10.1073/pnas.013505810010.1073/pnas.0135058100Search in Google Scholar PubMed PubMed Central

[20] Damoiseaux J. S., Rombouts S. A., Barkhof F., Scheltens P., Stam C. J., Smith S. M. et al., Consistent resting-state networks across healthy subjects, Proc. Natl. Acad. Sci. USA, 2006, 103, 13848–13853 http://dx.doi.org/10.1073/pnas.060141710310.1073/pnas.0601417103Search in Google Scholar PubMed PubMed Central

[21] De Luca M., Beckmann C. F., De Stefano N., Matthews P. M., Smith S. M., fMRI resting state networks define distinct modes of longdistance interactions in the human brain, Neuroimage, 2006, 29, 1359–1367 http://dx.doi.org/10.1016/j.neuroimage.2005.08.03510.1016/j.neuroimage.2005.08.035Search in Google Scholar PubMed

[22] MacDonald C. L., Schwarze N., Vaishnavi S. N., Epstein A. A., Snyder A. Z., Raichle M. E. et al., Verbal memory deficit following traumatic brain injury: assessment using advanced MRI methods, Neurology, 2008, 71, 1199–1201 http://dx.doi.org/10.1212/01.wnl.0000327521.69520.7f10.1212/01.wnl.0000327521.69520.7fSearch in Google Scholar PubMed PubMed Central

[23] Nakamura T., Hillary F. G., Biswal B. B., Resting network plasticity following brain injury, Plos One, 2009, 4, e8220 http://dx.doi.org/10.1371/journal.pone.000822010.1371/journal.pone.0008220Search in Google Scholar PubMed PubMed Central

[24] Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E. et al., Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data, Neuroimage, 2006, 31, 1487–1505 http://dx.doi.org/10.1016/j.neuroimage.2006.02.02410.1016/j.neuroimage.2006.02.024Search in Google Scholar PubMed

[25] Smith S. M., Nichols T. E., Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference, Neuroimage, 2009, 44, 83–98 http://dx.doi.org/10.1016/j.neuroimage.2008.03.06110.1016/j.neuroimage.2008.03.061Search in Google Scholar PubMed

[26] Beckmann C. F., Smith S. M., Probabilistic independent component analysis for functional magnetic resonance imaging, IEEE Trans. Med. Imaging, 2004, 23, 137–152 http://dx.doi.org/10.1109/TMI.2003.82282110.1109/TMI.2003.822821Search in Google Scholar PubMed

[27] Benson R. R., Meda S. A., Vasudevan S., Kou Z., Govindarajan K. A., Hanks R. A. et al., Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury, J. Neurotraum., 2007, 24, 446–459 http://dx.doi.org/10.1089/neu.2006.015310.1089/neu.2006.0153Search in Google Scholar PubMed

[28] Xu J., Rasmussen I. A., Lagopoulos J., Håberg A., Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging, J. Neurotraum., 2007, 24, 753–765 http://dx.doi.org/10.1089/neu.2006.020810.1089/neu.2006.0208Search in Google Scholar PubMed

[29] Nobuhara K., Okugawa G., Sugimoto T., Minami T., Tamagaki C., Takase K. et al., Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study, J. Neurol. Neurosurg. Psychiatry, 2006, 77, 120–122 http://dx.doi.org/10.1136/jnnp.2004.05512910.1136/jnnp.2004.055129Search in Google Scholar PubMed PubMed Central

[30] Herrmann L. L., Le Masurier M., Ebmeier K. P., White matter hyperintensities in late life depression: a systematic review, J. Neurol. Neurosurg. Psychiatry, 2008, 79, 619–624 http://dx.doi.org/10.1136/jnnp.2007.12465110.1136/jnnp.2007.124651Search in Google Scholar PubMed

[31] Greicius M. D., Srivastava G., Reiss A. L., Menon V., Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI, Proc. Natl. Acad. Sci. USA, 2004, 101, 4637–4642 http://dx.doi.org/10.1073/pnas.030862710110.1073/pnas.0308627101Search in Google Scholar PubMed PubMed Central

[32] Sorg C., Riedl V., Mühlau M., Calhoun V. D., Eichele T., Läer L. et al., Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2007, 104, 18760–18765 http://dx.doi.org/10.1073/pnas.070880310410.1073/pnas.0708803104Search in Google Scholar PubMed PubMed Central

[33] Liang M., Zhou Y., Jiang T., Liu Z., Tian L., Liu H. et al., Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging, Neuroreport, 2006, 17, 209–213 http://dx.doi.org/10.1097/01.wnr.0000198434.06518.b810.1097/01.wnr.0000198434.06518.b8Search in Google Scholar

[34] Cherkassky V. L., Kana R. K., Keller T. A., Just M. A., Functional connectivity in a baseline resting-state network in autism, Neuroreport, 2006, 17, 1687–1690 http://dx.doi.org/10.1097/01.wnr.0000239956.45448.4c10.1097/01.wnr.0000239956.45448.4cSearch in Google Scholar

[35] Haier R. J., Siegel B. V. Jr., MacLachlan A., Soderling E., Lottenberg S., Buchsbaum M. S., Regional glucose metabolic changes after learning a complex visuospatial motor task — a positron emission tomographic study, Brain Res., 1992, 570, 134–143 http://dx.doi.org/10.1016/0006-8993(92)90573-R10.1016/0006-8993(92)90573-RSearch in Google Scholar

[36] Davis S. W., Dennis N. A., Daselaar S. M., Fleck M. S., Cabeza R., Que PASA? The posterior-anterior shift in aging, Cereb. Cortex, 2008, 18, 1201–1209 http://dx.doi.org/10.1093/cercor/bhm15510.1093/cercor/bhm155Search in Google Scholar PubMed PubMed Central

[37] Damoiseaux J. S., Prater K. E., Miller B. L., Greicius M. D., Functional connectivity tracks clinical deterioration in Alzheimer’s disease, Neurobiol. Aging, 2011, epub ahead of print Search in Google Scholar

[38] Qi Z. G., Wu X., Wang Z., Zhang N., Dong H., Yao L. et al., Impairment and compensation coexist in amnestic MCI default mode network, Neuroimage, 2010, 50, 48–55 http://dx.doi.org/10.1016/j.neuroimage.2009.12.02510.1016/j.neuroimage.2009.12.025Search in Google Scholar PubMed

Published Online: 2012-3-14
Published in Print: 2012-3-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-012-0003-3/html
Scroll to top button