Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
See all formats and pricing
More options …

Spherical harmonic analysis of cortical complexity in autism and dyslexia

Emily Williams / Ayman El-Baz / Matthew Nitzken / Andrew Switala / Manuel Casanova
Published Online: 2012-03-14 | DOI: https://doi.org/10.2478/s13380-012-0008-y


Alterations in gyral form and complexity have been consistently noted in both autism and dyslexia. In this present study, we apply spherical harmonics, an established technique which we have exapted to estimate surface complexity of the brain, in order to identify abnormalities in gyrification between autistics, dyslexics, and controls. On the order of absolute surface complexity, autism exhibits the most extreme phenotype, controls occupy the intermediate ranges, and dyslexics exhibit lesser surface complexity. Here, we synthesize our findings which demarcate these three groups and review how factors controlling neocortical proliferation and neuronal migration may lead to these distinctive phenotypes.

Keywords: Cerebral cortex; Gyral window; Gyrification index; Minicolumn; Neurogenesis

  • [1] Braendgaard H., Evans S.M., Howard C.V., Gundersen H.J., The total number of neurons in the human neocortex unbiasedly estimated using optical disectors, J. Microsc., 1990, 157, 285–304 http://dx.doi.org/10.1111/j.1365-2818.1990.tb02967.xCrossrefGoogle Scholar

  • [2] Rakic P., A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, 18, 383–388 http://dx.doi.org/10.1016/0166-2236(95)93934-PCrossrefGoogle Scholar

  • [3] Cherniak C., Component placement optimization in the brain, J. Neurosci., 1994, 14, 2418–2427 Google Scholar

  • [4] Egghe L., Lafouge T., On the relation between the Maximum Entropy Principle and the Principle of Least Effort, Math. Comput. Modeling, 2006, 43, 1–8 http://dx.doi.org/10.1016/j.mcm.2004.01.017CrossrefGoogle Scholar

  • [5] Withers G.S., James C.D., Kingman C.E., Craighead H.G., Banker G.A. Effects of substrate geometry on growth cone behavior and axon branching, J. Neurobiol., 2006, 66, 1183–1194 http://dx.doi.org/10.1002/neu.20298CrossrefGoogle Scholar

  • [6] Branco T., Staras, K., The probability of neurotransmitter release: Variability and feedback control at single synapses, Nat. Rev. Neurosci., 2009, 10, 373–383 http://dx.doi.org/10.1038/nrn2634CrossrefWeb of ScienceGoogle Scholar

  • [7] Williams E.L., Casanova M.F., Autism and dyslexia: A spectrum of cognitive styles as defined by minicolumnar morphometry, Med. Hypotheses, 2010, 74, 59–62 http://dx.doi.org/10.1016/j.mehy.2009.08.003Web of ScienceCrossrefGoogle Scholar

  • [8] Hazlett H.C., Poe M.D., Gerig G., Styner M., Chappell C., Smith R.G., et al., Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years, Arch. Gen. Psychiatry, 2011, 68, 467–476 http://dx.doi.org/10.1001/archgenpsychiatry.2011.39Web of ScienceCrossrefGoogle Scholar

  • [9] Casanova M.F., Buxhoeveden D.P., Cohen M., Switala A.E., Roy E., Minicolumnar pathology in dyslexia, Ann. Neurol., 2002, 52, 108–110 http://dx.doi.org/10.1002/ana.10226CrossrefGoogle Scholar

  • [10] Casanova M.F., Buxhoeveden D., Switala A.E., Roy E., Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432 CrossrefGoogle Scholar

  • [11] Prothero J.W., Sundsten J.W., Folding of the cerebral cortex in mammals, Brain Behav. Evol., 1984, 24, 152–167 http://dx.doi.org/10.1159/000121313CrossrefGoogle Scholar

  • [12] Casanova M.F., El-Baz A., Mott M., Mannheim G., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764 http://dx.doi.org/10.1007/s10803-008-0681-4CrossrefWeb of ScienceGoogle Scholar

  • [13] Casanova M.F., El-Baz A.S., Giedd J., Rumsey J.M., Switala A.E., Increased white matter gyral depth in dyslexia: Implications for corticocortical connectivity, J. Autism Dev. Disord., 2010, 40, 21–29 http://dx.doi.org/10.1007/s10803-009-0817-1CrossrefWeb of ScienceGoogle Scholar

  • [14] Casanova M.F., Farag A., El-Baz A., Mott M., Hassan H., Fahmi R., et al., Abnormalities of the gyral window in autism: A macroscopic correlate to a putative minicolumnopathy, J. Spec. Educ. Rehabil., 2007, 2006, 85–101 Google Scholar

  • [15] Casanova M.F., Araque J., Giedd J., Rumsey J.M., Reduced brain size and gyrification in the brains of dyslexic patients, J. Child Neurol., 2004, 19, 275–281 http://dx.doi.org/10.1177/088307380401900407CrossrefGoogle Scholar

  • [16] Casanova M.F., El-Baz A., Elnakib A., Giedd J., Rumsey J.M., Williams E.L., Switala A.E., Corpus callosum shape analysis with application to dyslexia, Transl. Neurosci., 2010, 1, 124–130 http://dx.doi.org/10.2478/v10134-010-0017-8Web of ScienceCrossrefGoogle Scholar

  • [17] Shaywitz S.E., Dyslexia. Sci. Am., 1996, 275, 88–104 Google Scholar

  • [18] Lyon G.R., Shaywitz B.A., Defining dyslexia, comorbidity, teachers’ knowledge of language and reading: A definition of dyslexia, Ann. Dyslexia, 2003, 53, 1–14 http://dx.doi.org/10.1007/s11881-003-0001-9CrossrefGoogle Scholar

  • [19] Galaburda A.M., Developmental dyslexia: A multilevel syndrome. Dyslexia, 1999, 5, 183–191 http://dx.doi.org/10.1002/(SICI)1099-0909(199912)5:4<183::AID-DYS147>3.0.CO;2-CCrossrefGoogle Scholar

  • [20] American Psychiatric Association. (2010). Proposed revision: Autism Spectrum Disorder. American Psychiatric Association: DSM-5 Development, retrieved on 06/28/2011 from http://www.dsm5.org/ ProposedRevisions/Pages/proposedrevision.aspx?rid=94 Google Scholar

  • [21] Ricketts J., Research review: Reading comprehension in developmental disorders of language and communication, J. Child Psychol. Psychiatry, 2011, 52, 1111–1123 http://dx.doi.org/10.1111/j.1469-7610.2011.02438.xCrossrefWeb of ScienceGoogle Scholar

  • [22] Kochunov P., Castro C., Davis D., Dudley D., Brewer J., Zhang Y., et al., Mapping primary gyrogenesis during fetal development in primate brains: High-resolution in utero structural MRI of fetal brain development in pregnant baboons, Frontiers Neurosci., 2010, 4, 20 CrossrefGoogle Scholar

  • [23] Mares V., Lodin Z., The cellular kinetics of the developing mouse cerebellum, II: The function of the external granular layer in the process of gyrification, Brain Res., 1970, 23, 343–352 http://dx.doi.org/10.1016/0006-8993(70)90061-2CrossrefGoogle Scholar

  • [24] Armstrong E., Schleicher A., Omran H., Curtis M., Zilles K., The ontogeny of human gyrification, Cereb. Cortex, 1995, 5, 56–63 http://dx.doi.org/10.1093/cercor/5.1.56CrossrefGoogle Scholar

  • [25] Rajagopalan V., Scott J., Habas P.A., Kim K., Corbett-Detig J., Rousseau F., et al., Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero, J. Neurosci., 2011, 31, 2878–2887 http://dx.doi.org/10.1523/JNEUROSCI.5458-10.2011Web of ScienceCrossrefGoogle Scholar

  • [26] Rumsey J.M., Casanova M., Mannheim G.B., Patronas N., DeVaughn N., Hamburger S.D., et al., Corpus callosum morphology, as measured with MRI, in dyslexic men, Biol. Psychiatry, 1996, 39, 769–775 http://dx.doi.org/10.1016/0006-3223(95)00225-1CrossrefGoogle Scholar

  • [27] Eckert M.A., Leonard C.M., Richards T.L., Aylwayd E.H., Thomson J., Berninger V.W., Anatomical correlates of dyslexia: Frontal and cerebellar findings, Brain, 2003, 126, 482–494 http://dx.doi.org/10.1093/brain/awg026CrossrefGoogle Scholar

  • [28] Hardan A.Y., Muddasani S., Vemulappali M., Keshavan M.S., Minshew N.J., An MRI study of increased cortical thickness in autism, Am. J. Psychiatry, 2006, 163, 1290–1292 http://dx.doi.org/10.1176/appi.ajp.163.7.1290CrossrefGoogle Scholar

  • [29] Herbert M.R., Ziegler D.A., Makris N., Filipek P.A., Kemper T.L., Normandin, J.J., et al., Localization of white matter volume increase in autism and developmental language disorder, Ann. Neurol., 2004, 55, 530–540 http://dx.doi.org/10.1002/ana.20032CrossrefGoogle Scholar

  • [30] Galaburda A.M., Shermam G.F., Rosen G.D., Aboitiz F., Geschwind N., Developmental dyslexia: Four consecutive patients with cortical anomalies, Ann. Neurol., 1985, 18, 222–233 http://dx.doi.org/10.1002/ana.410180210CrossrefGoogle Scholar

  • [31] Nordahl C.W., Dierker D., Mostafavi I., Schumann C.M., Rivera S.M., Amaral D.G., et al., Cortical folding abnormalities in autism revealed by surface-based morphometry, J. Neurosci., 2007, 27, 11725–11735 http://dx.doi.org/10.1523/JNEUROSCI.0777-07.2007Web of ScienceCrossrefGoogle Scholar

  • [32] Wegiel J., Kuchna I., Nowicki K., Imaki H., Wegiel J., Marchi E., et al., The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes, Acta Neuropathol., 2010, 119, 755–770 http://dx.doi.org/10.1007/s00401-010-0655-4CrossrefWeb of ScienceGoogle Scholar

  • [33] Curatolo P., Porfirio M.C., Manzi B., Seri S. Autism in tuberous sclerosis, Eur. J. Pediatr. Neurol., 2004, 8, 327–332 http://dx.doi.org/10.1016/j.ejpn.2004.08.005CrossrefGoogle Scholar

  • [34] Butler M.G., Dasouki M.J., Zhou X.P., Talebizadeh Z., Brown M., Takahashi T.N., et al., Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumor suppressor gene mutations, J. Med. Genet., 2005, 42, 318–321 http://dx.doi.org/10.1136/jmg.2004.024646CrossrefGoogle Scholar

  • [35] Paracchini S., Thomas A., Castro S., Lai C., Paramasivam M., Wang Y., et al., The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration, Hum. Mol. Genet., 2006, 15, 1659–1666 http://dx.doi.org/10.1093/hmg/ddl089Google Scholar

  • [36] Dahdouh F., Anthoni H., Tapia-Páez I., Peyrar-Janvid M., Schulte-Körne G., Warnke A., et al., Further evidence for DYX1C1 as a susceptibility factor for dyslexia, Psychiatr. Genet., 2006, 19(2), 59–63 http://dx.doi.org/10.1097/YPG.0b013e32832080e1CrossrefGoogle Scholar

  • [37] Rosen G.D., Bai J., Wang Y., Fiondella C.G., Threlkeld S.W., LoTurco J.J., et al., Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations, Cereb. Cortex, 2007, 17, 2562–2572 http://dx.doi.org/10.1093/cercor/bhl162CrossrefWeb of ScienceGoogle Scholar

  • [38] Hevner R.F., From radial glia to pyramidal-projection neuron: Transcription factor cascades in cerebral cortex development, Mol. Neurobiol., 2006, 33, 33–50 http://dx.doi.org/10.1385/MN:33:1:033CrossrefGoogle Scholar

  • [39] Williams E.L., Casanova M.F., Above genetics: Lessons from cerebral development in autism, Transl. Neurosci., 2011, 2, 106–120 http://dx.doi.org/10.2478/s13380-011-0016-3CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2012-03-14

Published in Print: 2012-03-01

Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-012-0008-y.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

C. Ecker, D. Andrews, F. Dell'Acqua, E. Daly, C. Murphy, M. Catani, M. Thiebaut de Schotten, S. Baron-Cohen, M.C. Lai, M.V. Lombardo, E.T. Bullmore, J. Suckling, S. Williams, D.K. Jones, A. Chiocchetti, and D.G.M. Murphy
Cerebral Cortex, 2016, Volume 26, Number 7, Page 3297
Matthew J. Nitzken, Manuel F. Casanova, Georgy Gimelfarb, Tamer Inanc, Jacek M. Zurada, and Ayman El-Baz
IEEE Journal of Biomedical and Health Informatics, 2014, Volume 18, Number 4, Page 1337
Dienke J. Bos, Jessica Merchán-Naranjo, Kenia Martínez, Laura Pina-Camacho, Ivan Balsa, Leticia Boada, Hugo Schnack, Bob Oranje, Manuel Desco, Celso Arango, Mara Parellada, Sarah Durston, and Joost Janssen
Journal of the American Academy of Child & Adolescent Psychiatry, 2015, Volume 54, Number 8, Page 668
Emily L. Casanova and Manuel F. Casanova
Frontiers in Cellular Neuroscience, 2014, Volume 8
Gregory L. Wallace, Briana Robustelli, Nathan Dankner, Lauren Kenworthy, Jay N. Giedd, and Alex Martin
Brain, 2013, Volume 136, Number 6, Page 1956
Emily Williams and Manuel Casanova
Journal of Special Education and Rehabilitation, 2012, Volume 13, Number 3-4

Comments (0)

Please log in or register to comment.
Log in