Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
See all formats and pricing
More options …

fMRI neural activation patterns induced by professional military training

Krešimir Ćosić / Siniša Popović / Ivan Fabek / Bernard Kovač / Milan Radoš / Marko Radoš / Lana Vasung / Miloš Judaš / Ivica Kostović / Goran Šimić
Published Online: 2012-03-14 | DOI: https://doi.org/10.2478/s13380-012-0012-2


Professional military training makes tough demands on soldiers’ perceptual and motor skills, as well as on their physical fitness and cognitive capabilities in the course of preparation for stressful operational environments. In this pilot study we attempted to identify difference in pattern of neural responses between extensively trained, professional mission-ready soldiers and novice soldiers during audiovisual simulation of mission conditions. We performed fMRI scanning on a few volunteers during presentation of semantically relevant video-clips of real combat from Afghanistan to evaluate influence of military training on mental responses of soldiers. We showed that for professional mission-ready soldiers a week before their deployment to Afghanistan, videoclips with deadly ambush combat induce greater overall brain activation compared to novice soldiers. Missionready soldiers showed greater activation in premotor/prefrontal cortex, posterior parietal cortex, and posterior temporal cortex. These results imply that fMRI technique could be used as challenging step forward in the multidimensional evaluation of military training influence on neural responses and operational capabilities of professional soldiers. This is extremely important not only for potential failure prevention and mere success of the mission, but even more for the survival and the well-being of the servicemen and servicewomen.

Keywords: fMRI; Professional soldier; Novice soldier; Combat operations; Professional military training; Attention network; Intention understanding; Mirror neurons system

  • [1] Arnsten A. F. T., Stress signalling pathways that impair prefrontal cortex structure and function, Nat. Rev. Neurosci., 2009, 10, 410–422 http://dx.doi.org/10.1038/nrn2648CrossrefWeb of ScienceGoogle Scholar

  • [2] Ogawa S., Lee T. M., Kay A. R., Tank D. W., Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA, 1990, 87, 9868–9872 http://dx.doi.org/10.1073/pnas.87.24.9868CrossrefGoogle Scholar

  • [3] Calvo-Merino B., Glaser D. E., Grezes J., Passingham R. E., Haggard P., Action observation and acquired motor skills: An fMRI study with expert dancers, Cereb. Cortex, 2005, 15, 1243–1249 http://dx.doi.org/10.1093/cercor/bhi007CrossrefGoogle Scholar

  • [4] Calvo-Merino B., Grezes J., Glaser D. E., Passingham R. E., Haggard P., Seeing or doing? Influence of visual and motor familiarity in action observation, Curr. Biol., 2006, 16, 1905–1910 http://dx.doi.org/10.1016/j.cub.2006.07.065CrossrefGoogle Scholar

  • [5] Farrow D., Abernethy B., Do expertise and the degree of perception — action coupling affect natural anticipatory performance?, Perception, 2003, 32, 1127–1139 http://dx.doi.org/10.1068/p3323CrossrefGoogle Scholar

  • [6] Milton J., Solodkin A., Hlustik P., Small S. L., The mind of expert motor performance is cool and focused, Neuroimage, 2007, 35, 804–813 http://dx.doi.org/10.1016/j.neuroimage.2007.01.003Web of ScienceCrossrefGoogle Scholar

  • [7] Stevens C., Winskel A., Howell C., Vidal L. M., Latimer C., Milne-Home L., Percieving dance: schematic expectations guide experts’ scanning of a contemporary dance film, J. Dance Med. Sci., 2010, 14, 19–25 Google Scholar

  • [8] Wright M. J., Jackson R. C., Brain regions concerned with perceptual skills in tennis: An fMRI study, Int. J. Psychophysiol., 2007, 63, 214–220 http://dx.doi.org/10.1016/j.ijpsycho.2006.03.018CrossrefWeb of ScienceGoogle Scholar

  • [9] Brass M., Schmitt R. M., Spengler S., Gergely G., Investigating action understanding: Inferential processes versus action simulation, Curr. Biol., 2007, 17, 2117–2121 http://dx.doi.org/10.1016/j.cub.2007.11.057CrossrefWeb of ScienceGoogle Scholar

  • [10] Kilner J. M., More than one pathway to action understanding, Trends Cogn. Sci, 2011, 15, 352–357 http://dx.doi.org/10.1016/j.tics.2011.06.005CrossrefWeb of ScienceGoogle Scholar

  • [11] Liepelt R., Von Cramon D. Y., Brass M., How do we infer others’ goals from non-stereotypic actions? The outcome of context-sensitive inferential processing in right inferior parietal and posterior temporal cortex, Neuroimage, 2008, 43, 784–792 http://dx.doi.org/10.1016/j.neuroimage.2008.08.007Web of ScienceCrossrefGoogle Scholar

  • [12] Pavlova M., Sokolov A. N., Birbaumer N., Krageloh-Mann I., Perception and understanding of others’ actions and brain connectivity, J. Cogn. Neurosci., 2008, 20, 494–504 http://dx.doi.org/10.1162/jocn.2008.20034Web of ScienceCrossrefGoogle Scholar

  • [13] Van Overwalle F., Baetens K., Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis, Neuroimage, 2009, 48, 564–584 http://dx.doi.org/10.1016/j.neuroimage.2009.06.009CrossrefWeb of ScienceGoogle Scholar

  • [14] Wyk B. C. V., Hudac C. M., Carter E. J., Sobel D. M., Pelphrey K. A., Action Understanding in the superior temporal sulcus region, Psychol. Sci., 2009, 20, 771–777 http://dx.doi.org/10.1111/j.1467-9280.2009.02359.xCrossrefWeb of ScienceGoogle Scholar

  • [15] Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E., Penny W. D. (eds.), Statistical parametric mapping: The analysis of functional brain images, Amsterdam, Academic Press, 2007 Google Scholar

  • [16] Bret M., Anton J. L., Valabregue R., Poline J. B., Region of interest analysis using an SPM toolbox, 8th International conference on functional mapping of the human brain, Sendai, Japan, 2002, abstract 497 Google Scholar

  • [17] Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, Neuroimage, 2002, 15, 273–289 http://dx.doi.org/10.1006/nimg.2001.0978CrossrefGoogle Scholar

  • [18] Scherer K. R., Appraisal considered as a process of multilevel sequential checking, In: Scherer K. R., Schorr A., Johanstone T. (eds.), Appraisal processes in emotion: Theory, methods, research, New York, Oxford University Press, 2001, 92–120 Google Scholar

  • [19] Scharpf K. R., Wendt J., Lotze M., Hamm A.O., The brain’s relevance detection network operates independently of stimulus modality, Behav. Brain Res., 2010, 210, 16–23 http://dx.doi.org/10.1016/j.bbr.2010.01.038Web of ScienceCrossrefGoogle Scholar

  • [20] Tipper C. M., Handy T. C., Giesbrecht B., Kingstone A., Brain responses to biological relevance, J. Cogn. Neurosci., 2008, 20, 879–891 http://dx.doi.org/10.1162/jocn.2008.20510CrossrefGoogle Scholar

  • [21] Corbetta M., Akbudak E., Conturo T. E., Snyder A. Z., Ollinger J. M., Drury H. A., et al., A common network of functional areas for attention and eye movements, Neuron, 1998, 21, 761–773 http://dx.doi.org/10.1016/S0896-6273(00)80593-0CrossrefGoogle Scholar

  • [22] Corbetta M., Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems?, Proc. Natl., Acad. Sci. USA, 1998, 95, 831–838 http://dx.doi.org/10.1073/pnas.95.3.831CrossrefGoogle Scholar

  • [23] Leonards U., Sunaert S., Van Hecke P., Orban G. A., Attention mechanisms in visual search — An fMRI study, J. Cogn. Neurosci., 2000, 12, 61–75 http://dx.doi.org/10.1162/089892900564073CrossrefGoogle Scholar

  • [24] Ptak R., Schnider A., The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect, J. Neurosci., 2010, 30, 12557–12565 http://dx.doi.org/10.1523/JNEUROSCI.2722-10.2010Web of ScienceCrossrefGoogle Scholar

  • [25] Shulman G. L., Pope D. L. W., Astafiev S. V., Mcavoy M. P., Snyder A. Z., Corbetta M., Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network, J. Neurosci., 2010, 30, 3640–3651 http://dx.doi.org/10.1523/JNEUROSCI.4085-09.2010Web of ScienceCrossrefGoogle Scholar

  • [26] Wen X. T., Yao L., Liu Y. J., Ding M. Z., Causal interactions in attention networks predict behavioral performance, J. Neurosci., 2012, 32, 1284–1292 http://dx.doi.org/10.1523/JNEUROSCI.2817-11.2012CrossrefGoogle Scholar

  • [27] Ptak R., The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment, Neuroscientist, 2011 (epub ahead of print) Web of ScienceGoogle Scholar

  • [28] Bellenkes A. H., Wickens C. D., Kramer A. F., Visual scanning and pilot expertise: The role of attentional flexibility and mental model development. Aviat. Space Environ. Med., 1997, 68, 569–579 Google Scholar

  • [29] Land M. F., McLeod P., From eye movements to actions: how batsmen hit the ball, Nat. Neurosci., 2000, 3, 1340–1345 http://dx.doi.org/10.1038/81887CrossrefGoogle Scholar

  • [30] Rizzolatti G., Fadiga L., Gallese V., Fogassi L., Premotor cortex and the recognition of motor actions, Cogn. Brain Res., 1996, 3, 131–141 http://dx.doi.org/10.1016/0926-6410(95)00038-0CrossrefGoogle Scholar

  • [31] Rizzolatti G., Sinigaglia C., The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations, Nat. Rev. Neurosci., 2010, 11, 264–274 http://dx.doi.org/10.1038/nrn2805Web of ScienceCrossrefGoogle Scholar

  • [32] Carter E. J., Hodgins J. K., Rakison D. H., Exploring the neural correlates of goal-directed action and intention understanding, Neuroimage, 2011, 54, 1634–1642 http://dx.doi.org/10.1016/j.neuroimage.2010.08.077CrossrefWeb of ScienceGoogle Scholar

  • [33] Stuss D. T., Knight R. T., Principles of frontal lobe function, New York, Oxford University Press, 2002 http://dx.doi.org/10.1093/acprof:oso/9780195134971.001.0001CrossrefGoogle Scholar

  • [34] Kouneiher F., Charron S., Koechlin E., Motivation and cognitive control in the human prefrontal cortex, Nat. Neurosci., 2009, 12, 939–945 http://dx.doi.org/10.1038/nn.2321CrossrefGoogle Scholar

About the article

Published Online: 2012-03-14

Published in Print: 2012-03-01

Citation Information: Translational Neuroscience, Volume 3, Issue 1, Pages 46–50, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-012-0012-2.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ellen Kok, Anique B. De Bruin, Koos van Geel, Andreas Gegenfurtner, Ide Heyligers, and Bettina Sorger
Frontiers in Human Neuroscience, 2018, Volume 12
Hemel N. Modi, Harsimrat Singh, Felipe Orihuela-Espina, Thanos Athanasiou, Francesca Fiorentino, Guang-Zhong Yang, Ara Darzi, and Daniel R. Leff
Annals of Surgery, 2018, Volume 267, Number 4, Page 683

Comments (0)

Please log in or register to comment.
Log in