Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Repetitive transcanial magnetic stimulation (RTMS) modulates event-related potential (ERP) indices of attention in autism

Manuel Casanova
  • Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
  • Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
  • Department of Bioengineering, University of Louisville J.B. Speed School of Engineering, Louisville, KY, 40208, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joshua Baruth
  • Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
  • Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ayman El-Baz
  • Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
  • Department of Bioengineering, University of Louisville J.B. Speed School of Engineering, Louisville, KY, 40208, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Allan Tasman
  • Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lonnie Sears / Estate Sokhadze
  • Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
  • Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
  • Department of Bioengineering, University of Louisville J.B. Speed School of Engineering, Louisville, KY, 40208, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-01 | DOI: https://doi.org/10.2478/s13380-012-0022-0

Abstract

Individuals with autism spectrum disorder (ASD) have previously been shown to have significantly augmented and prolonged event-related potentials (ERP) to irrelevant visual stimuli compared to controls at both early and later stages (e.g., N200, P300) of visual processing and evidence of an overall lack of stimulus discrimination. Abnormally large and indiscriminative cortical responses to sensory stimuli may reflect cortical inhibitory deficits and a disruption in the excitation/inhibition ratio. Low-frequency (≤ 1HZ) repetitive transcranial magnetic stimulation (rTMS) has been shown to increase inhibition of stimulated cortex by the activation of inhibitory circuits. It was our prediction that after 12 sessions of low-frequency rTMS applied bilaterally to the dorsolateral prefrontal cortices in individuals with ASD there would be a significant improvement in ERP indices of selective attention evoked at later (i.e., 200–600 ms) stages of attentional processing as well as an improvement in motor response error rate. We assessed 25 participants with ASD in a task of selective attention using illusory figures before and after 12 sessions of rTMS in a controlled design where a waiting-list group of 20 children with ASD performed the same task twice. We found a significant improvement in both N200 and P300 components as a result of rTMS as well as a significant reduction in response errors. We also found significant reductions in both repetitive behavior and irritability according to clinical behavioral questionnaires as a result of rTMS. We propose that rTMS has the potential to become an important therapeutic tool in ASD research and treatment.

Keywords: Autism; TMS; Event-related potentials; Attention; Perception

  • [1] American Psychiatric Association diagnostic and statistical manual of mental disorders (DSM-IV TR), 4th ed., American Psychiatric Association, Washington, DC, 2000 Google Scholar

  • [2] Charman T., Autism spectrum disorders, Psychiatry, 2008, 7, 331–334 http://dx.doi.org/10.1016/j.mppsy.2008.05.015CrossrefGoogle Scholar

  • [3] Happe F.G.E., Autism: cognitive deficit or cognitive style? Trends Cogn. Sci., 1999, 3, 216–222 http://dx.doi.org/10.1016/S1364-6613(99)01318-2CrossrefGoogle Scholar

  • [4] Casanova M.F., Buxhoeveden D., Gomez J., Disruption in the inhibitory architecture of the cell minicolumn: implications for autism, Neuroscientist, 2003, 9, 496–507 http://dx.doi.org/10.1177/1073858403253552CrossrefGoogle Scholar

  • [5] Gomes E., Pedroso F.S., Wagner M.B., Auditory hypersensitivity in the autistic spectrum disorder, Pro. Fono., 2008, 20, 279–284 http://dx.doi.org/10.1590/S0104-56872008000400013CrossrefGoogle Scholar

  • [6] Jeste S.S., Nelson C.A. 3rd., Event related potentials in the understanding of autism spectrum disorders: an analytical review, J. Autism Dev. Disord., 2009, 39, 495–510 http://dx.doi.org/10.1007/s10803-008-0652-9CrossrefGoogle Scholar

  • [7] Coles M.G.H., Rugg M.D., Event-related brain potentials: an introduction, In: Rugg M.D., Coles M.G.H. (Eds.), Electrophysiology of mind. Event-related brain potentials and cognition, Oxford University Press, Oxford, 1995 Google Scholar

  • [8] Eichele T., Specht K., Moosmann M., Jongsma M.L., Quiroga R.Q., et al., Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI, Proc. Natl. Acad. Sci. U S A, 2005, 102, 17798–17803 http://dx.doi.org/10.1073/pnas.0505508102CrossrefGoogle Scholar

  • [9] Folstein J.R., Van Petten C., Rose S.A., Novelty and conflict in the categorization of complex stimuli, Psychophysiology, 2008, 45, 467–479 http://dx.doi.org/10.1111/j.1469-8986.2007.00628.xCrossrefGoogle Scholar

  • [10] Herrmann C.S., Knight R.T., Mechanisms of human attention: event related potentials and oscillations, Neurosci. Biobehav. Rev., 2001, 25, 465–476 http://dx.doi.org/10.1016/S0149-7634(01)00027-6CrossrefGoogle Scholar

  • [11] Picton T.W., The P300 wave of the human event-related potential, J. Clin. Neurophysiol., 1992, 9, 456–479 http://dx.doi.org/10.1097/00004691-199210000-00002CrossrefGoogle Scholar

  • [12] Polich J., Theoretical overview of P3a and P3b, In: Polich J. (Ed.), Detection of change. Event-related potential and fMRI findings, Kluwer Academic Press, Boston, 2003 Google Scholar

  • [13] Polich J., Updating P300: an integrative theory of P3a and P3b, J. Clin. Neurophysiol., 2007, 118, 2128–2148 http://dx.doi.org/10.1016/j.clinph.2007.04.019CrossrefGoogle Scholar

  • [14] Pritchard W.S., Psychophysiology of P300, Psychol. Bull., 1981, 89, 506–540 http://dx.doi.org/10.1037/0033-2909.89.3.506CrossrefGoogle Scholar

  • [15] Sokhadze E., Baruth J., Tasman A., Sears L., Mathai G., El-Baz A., Casanova M.F., Event-related potential study of novelty processing abnormalities in autism, Appl. Psychophysiol. Biofeedback, 2009, 34, 37–51 http://dx.doi.org/10.1007/s10484-009-9074-5CrossrefGoogle Scholar

  • [16] Baruth J.M., Casanova M., Sears L., Sokhadze E., Early-stage visual processing abnormalities in autism spectrum disorder (ASD), Transl. Neurosci., 2010, 1, 177–187 http://dx.doi.org/10.2478/v10134-010-0024-9CrossrefGoogle Scholar

  • [17] Casanova M.F., Buxhoeveden D.P., Brown C., Clinical and macroscopic correlates of minicolumnar pathology in autism, J. Child Neurol., 2002, 17, 692–695 http://dx.doi.org/10.1177/088307380201700908CrossrefGoogle Scholar

  • [18] Rubenstein J.L.R., Merzenich M.M., Model of autism: increased ratio of excitation/inhibition in key neural systems, Gen. Brain Behav., 2003, 2, 255–267 http://dx.doi.org/10.1034/j.1601-183X.2003.00037.xCrossrefGoogle Scholar

  • [19] Mountcastle V.B., Introduction. Computation in cortical columns, Cereb. Cortex, 2003, 13, 2–4 http://dx.doi.org/10.1093/cercor/13.1.2CrossrefGoogle Scholar

  • [20] Casanova M.F., The neuropathology of autism, Brain Pathol., 2007, 17, 422–433 http://dx.doi.org/10.1111/j.1750-3639.2007.00100.xCrossrefGoogle Scholar

  • [21] Casanova M.F., van Kooten I., Switala A. E., van England H., Heinsen H., Steinbuch H.W.M., et al., Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients, Clin. Neurosci. Res., 2006, 6, 127–133 http://dx.doi.org/10.1016/j.cnr.2006.06.003CrossrefGoogle Scholar

  • [22] Casanova M.F., Buxhoeveden D.P., Switala A.E., Roy E., Asperger’s syndrome and cortical neuropathology, J. Child Neurol., 2002, 17, 142–145 http://dx.doi.org/10.1177/088307380201700211CrossrefGoogle Scholar

  • [23] Belmonte M.K., Yurgelun-Todd D.A., Functional anatomy of impaired selective attention and compensatory processing in autism, Cognitive Brain Res., 2003, 17, 651–664 http://dx.doi.org/10.1016/S0926-6410(03)00189-7CrossrefGoogle Scholar

  • [24] Gray J.R., Chabris C.F., Braver T.S., Neural mechanisms of general fluid intelligence, Nat. Neurosci., 2003, 6, 316–322 http://dx.doi.org/10.1038/nn1014CrossrefGoogle Scholar

  • [25] Matzel L.D., Kolata S., Selective attention, working memory, and animal intelligence, Neurosci. Biobehav. Rev., 2010, 34, 23–30 http://dx.doi.org/10.1016/j.neubiorev.2009.07.002CrossrefGoogle Scholar

  • [26] Maeda F., Keenan J.P., Tormos J.M., Topka H., Pascual-Leone A., Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation, Clin. Neurophysiol., 2000, 111, 800–805 http://dx.doi.org/10.1016/S1388-2457(99)00323-5CrossrefGoogle Scholar

  • [27] Pascual-Leone A., Valls-Sole J., Wasserman E.M., Hallett M., Responses to rapid-rate transcranial magnetic stimulation of the human cortex, Brain, 1994, 117, 847–858 http://dx.doi.org/10.1093/brain/117.4.847CrossrefGoogle Scholar

  • [28] Pascual-Leone A., Walsh V., Rothwell J., Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity, Curr. Opin. Neurobiol., 2000, 10, 232–237 http://dx.doi.org/10.1016/S0959-4388(00)00081-7CrossrefGoogle Scholar

  • [29] Hoffman R.E., Cavus I., Slow transcranial magnetic stimulation, longterm depotentiation, and brain hyperexcitability disorders, Am. J. Psychiatr., 2002, 159, 1093–1102 http://dx.doi.org/10.1176/appi.ajp.159.7.1093CrossrefGoogle Scholar

  • [30] Näätänen R., Gaillard A.W.K., Mäntysalo S., Early selective attention effect on evoked potential reinterpreted, Acta Psychologica, 1978, 2, 313–329 http://dx.doi.org/10.1016/0001-6918(78)90006-9CrossrefGoogle Scholar

  • [31] Näätänen R., Schröger E., Karakas S., Tervaniemi M., Paavilainen, P., Development of a memory trace for a complex sound in the human brain, Neuroreport, 1993, 4, 503–506 http://dx.doi.org/10.1097/00001756-199305000-00010CrossrefGoogle Scholar

  • [32] Potts G.F., Patel S.H., Azzam P.N., Impact of instructed relevance on the visual ERP, Int. J. Psychophysiol., 2004, 52, 197–209 http://dx.doi.org/10.1016/j.ijpsycho.2003.10.005CrossrefGoogle Scholar

  • [33] Potts G.F., Wood S.M., Kothmann D., Martin L.E., Parallel perceptual enhancement and hierarchic relevance evaluation in an audio-visual conjunction task, Brain Res., 2008, 1236, 126–139 http://dx.doi.org/10.1016/j.brainres.2008.07.104CrossrefGoogle Scholar

  • [34] Carter C.S., Braver T.S, Barch D.M., Botvinick M.M., Noll D., Cohen J.D., Anterior cingulate cortex, error detection, and the online monitoring of performance, Science, 1998, 280, 747–749 http://dx.doi.org/10.1126/science.280.5364.747CrossrefGoogle Scholar

  • [35] Enriquez-Geppert S., Konrad C., Pantev C., Huster R.J., Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task, Neuroimage, 2010, 51, 877–887 http://dx.doi.org/10.1016/j.neuroimage.2010.02.043CrossrefGoogle Scholar

  • [36] West R., Bowry R., McConville C., Sensitivity of medial frontal cortex to response and nonresponse conflict, Psychophysiol., 2004, 41, 739–748 http://dx.doi.org/10.1111/j.1469-8986.2004.00205.xCrossrefGoogle Scholar

  • [37] West R., Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks, Neuropsychologia, 2003, 41, 1122–1135 http://dx.doi.org/10.1016/S0028-3932(02)00297-XCrossrefGoogle Scholar

  • [38] Donkers F.C.L., van Boxtel G.J.M., The N2 in go/no-go tasks reflects conflict monitoring not response inhibition, Brain Cogn., 2004, 56, 165–176 http://dx.doi.org/10.1016/j.bandc.2004.04.005CrossrefGoogle Scholar

  • [39] Van Veen V., Carter C.S., The timing of action-monitoring process in the anterior cingulate cortex, J. Cogn. Neurosci., 2002, 14, 593–602 http://dx.doi.org/10.1162/08989290260045837CrossrefGoogle Scholar

  • [40] Hruby T., Marsalek P., Event-related potentials—the P3 wave, Acta Neurobiol. Exp., 2003, 63, 55–63 Google Scholar

  • [41] Polich J., Kok A., Cognitive and biological determinants of P300: an integrative review, Biol. Psychol., 1995, 41, 103–146 http://dx.doi.org/10.1016/0301-0511(95)05130-9CrossrefGoogle Scholar

  • [42] Le Couteur A., Lord C., Rutter M., The autism diagnostic interview- revised (ADI-R), Western Psychological Services, Los Angeles, CA, 2003 Google Scholar

  • [43] Wechsler D., Wechsler intelligence scale for children, 4th ed., Harcourt Assessment, Inc., San Antonio, TX, 2003 Google Scholar

  • [44] Wechsler D., Wechsler abbreviated scale of intelligence, Harcourt Assessment, Inc., San Antonio, TX, 1999 Google Scholar

  • [45] Ferree T.C., Luu P., Russell G.S., Tucker D.M., Scalp electrode impedance, infection risk, and EEG data quality, Clin. Neurophysiol., 2001, 112, 444–536 http://dx.doi.org/10.1016/S1388-2457(00)00533-2CrossrefGoogle Scholar

  • [46] Perrin E., Pernier J., Bertrand O., Giard M., Echallier J.F., Mapping of scalp potentials by surface spline interpolation, Electroencephalogr. Clin. Neurophysiol., 1987, 66, 75–81 http://dx.doi.org/10.1016/0013-4694(87)90141-6CrossrefGoogle Scholar

  • [47] Fletcher E.M., Kussmaul C.L., Mangun G.R., Estimation of interpolation errors in scalp topographic mapping, Electroctoencephalogr. Clin. Neurophysiol., 1996, 98, 422–434 http://dx.doi.org/10.1016/0013-4694(96)95135-4CrossrefGoogle Scholar

  • [48] Srinivasan R., Tucker D.M., Murias M., Estimating the spatial Nyquist of the human EEG, Behav. Res. Meth. Instrum. Comput., 1998, 30, 8–19 http://dx.doi.org/10.3758/BF03209412CrossrefGoogle Scholar

  • [49] Luu P., Tucker D.M., Englander R., Lockfeld A., Lutsep H., Oken B., Localizing acute stroke-related EEC changes: assessing the effects of spatial undersampling, J. Clin. Neurophysiol., 2001, 18, 302–317 http://dx.doi.org/10.1097/00004691-200107000-00002CrossrefGoogle Scholar

  • [50] Kanizsa G., Subjective contours, Sci. American, 1976, 235, 48–52 http://dx.doi.org/10.1038/scientificamerican0476-48CrossrefGoogle Scholar

  • [51] Daskalakis Z.J., Christensen B.K., Fitzgerald P.B., Chen R., Transcranial magnetic stimulation: a new investigational and treatment tool in psychiatry, J. Neuropsychiatry Clin. Neurosci., 2002, 14, 406–415 http://dx.doi.org/10.1176/appi.neuropsych.14.4.406CrossrefGoogle Scholar

  • [52] Gershon A.A., Dannon P.N., Grunhaus L., Transcranial magnetic stimulation in the treatment of depression, Am. J. Psychiatr., 2003, 160, 835–845 http://dx.doi.org/10.1176/appi.ajp.160.5.835CrossrefGoogle Scholar

  • [53] Greenberg B.D., Transcranial magnetic stimulation in anxiety disorders. In: George M.S., Belmaker R.H. (Eds.), Transcranial magnetic stimulation in clinical psychiatry, American Psychiatric Publishing, Inc., Washington, DC, 2007 Google Scholar

  • [54] Loo C., Mitchell P., A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy, J. Affect. Disord., 2005, 88, 255–267 http://dx.doi.org/10.1016/j.jad.2005.08.001CrossrefGoogle Scholar

  • [55] Wassermann E.M., Lisanby S.H., Therapeutic application of repetitive transcranial magnetic stimulation: a review, Clin. Neurophysiol., 2001, 112, 1367–1377 http://dx.doi.org/10.1016/S1388-2457(01)00585-5CrossrefGoogle Scholar

  • [56] Helmich R.C., Siebner H.R., Bakker M., Munchau A., Bloem B.R., Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson’s disease, J. Neurol. Sci., 2006, 248, 84–96 http://dx.doi.org/10.1016/j.jns.2006.05.009CrossrefGoogle Scholar

  • [57] Sokhadze E., Baruth J., Tasman A., Mansoor M., Ramaswamy R., Sears L., Mathai G., El-Baz A., Casanova M.F., Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects eventrelated potential measures of novelty processing in autism, Appl. Psychophysiol. Biofeedback, 2010, 35, 147–161 http://dx.doi.org/10.1007/s10484-009-9121-2CrossrefGoogle Scholar

  • [58] Baruth J., Williams E., Sokhadze E., El-Baz A., Sears L., Casanova, M.F. (2011). Repetitive transcranial stimulation (rTMS) improves electroencephalographic and behavioral outcome measures in autism spectrum disorders (ASD). Autism Sci. Digest, 2011, 1(1), 52–57. Google Scholar

  • [59] Aman M.G., Singh N.N., Aberrant behavior checklist-community. Supplementary manual, Slosson Educational Publications, East Aurora, NY, 1994 Google Scholar

  • [60] Aman M.G., Management of hyperactivity and other acting out problems in patients with autism spectrum disorder, Semin. Pediatr. Neurol., 2004, 11, 225–228 http://dx.doi.org/10.1016/j.spen.2004.07.006CrossrefGoogle Scholar

  • [61] Constantino J.N., Gruber C.P., The social responsiveness scale (SRS) manual, Western Psychological Services, Los Angeles, CA, 2005 Google Scholar

  • [62] Bodfish J.W., Symons F.J., Lewis M.H., Repetitive behavior scale, Western Carolina Center Research Reports, Morganton, NC, 1999 Google Scholar

  • [63] Bodfish J.W., Symons F.S., Parker D.E., Lewis M.H., Varieties of repetitive behavior in autism: comparisons to mental retardation, J. Autism Dev. Disord., 2000, 30, 237–243 http://dx.doi.org/10.1023/A:1005596502855CrossrefGoogle Scholar

  • [64] Enticott P.G., Rinehart N.J., Tonge B.J., Bradshaw J.L., Fitzgerald P.B., Repetitive transcranial magnetic stimulation (rTMS) improves movement-related cortical potentials in autism spectrum disorders, Brain Stimul., 2012, 5, 30–37 http://dx.doi.org/10.1016/j.brs.2011.02.001CrossrefGoogle Scholar

  • [65] Sokhadze E., El-Baz A., Baruth J., Mathai G., Sears L., Casanova M.F., Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism, J. Autism Dev. Disord., 2009, 39, 619–634 http://dx.doi.org/10.1007/s10803-008-0662-7CrossrefGoogle Scholar

  • [66] Baruth J.M., Casanova M., El-Baz A., Horrell T., Mathai G., Sears L., Sokhadze E., Low-frequency repetitive transcranial magnetic stimulation (rTMS) modulates evoked-gamma oscillations in autism spectrum disorder (ASD), J. Neurother., 2010, 14, 179–194 http://dx.doi.org/10.1080/10874208.2010.501500CrossrefGoogle Scholar

  • [67] Tuchman R.F., Rapin I., Regression in pervasive developmental disorders: seizures and epileptiform electroencephalogram correlates, Pediatrics, 1997, 99, 560–566 http://dx.doi.org/10.1542/peds.99.4.560CrossrefGoogle Scholar

  • [68] Mesulam M.M., Behavioral Neuroanatomy: Large-networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In Mesulam M.M (Ed) Principles of Behavioral and Cognitive Neurology, Oxford University Press: New York, 2nd edition, 2000, Ch. 1, pp. 1–120 Google Scholar

  • [69] Fernandez-Duque D., Baird J., Posner, M., Executive attention and metacognitive regulation. Consc. Cogn., 2000, 9, 288–307 http://dx.doi.org/10.1006/ccog.2000.0447CrossrefGoogle Scholar

About the article

Published Online: 2012-06-01

Published in Print: 2012-06-01


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-012-0022-0.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lázaro Gómez, Belkis Vidal, Carlos Maragoto, Lilia Morales, Sheyla Berrillo, Héctor Vera Cuesta, Margarita Baez, Marlén Denis, Tairí Marín, Yaumara Cabrera, Abel Sánchez, Celia Alarcón, Maribel Selguera, Yaima Llanez, Lucila Dieguez, and María Robinson
Behavioral Sciences, 2017, Volume 7, Number 3, Page 63
[2]
Aljoscha Thomschewski, Yvonne Höller, Peter Höller, Stefan Leis, and Eugen Trinka
Frontiers in Neuroscience, 2017, Volume 11
[3]
Hsing-Chang Ni, June Hung, Chen-Te Wu, Yu-Yu Wu, Chee-Jen Chang, Rou-Shayn Chen, and Ying-Zu Huang
Frontiers in Neuroscience, 2017, Volume 11
[4]
Theresa Veltri, Naira Taroyan, and Paul G Overton
Journal of Psychopharmacology, 2017, Page 026988111769586
[5]
Rahul Singh, Ryan C. Turner, Linda Nguyen, Kartik Motwani, Michelle Swatek, and Brandon P. Lucke-Wold
Behavioural Neurology, 2016, Volume 2016, Page 1
[6]
Hooshang Dadgar, Javad Alaghband Rad, Anahita Khorrami, and Zahra Soleymani
Archives of Neuroscience, 2016, Volume In press, Number In press
[7]
Ernest V. Pedapati, Donald L. Gilbert, Craig A. Erickson, Paul S. Horn, Rebecca C. Shaffer, Logan K. Wink, Cameron S. Laue, and Steve W. Wu
Journal of Child and Adolescent Psychopharmacology, 2016, Volume 26, Number 7, Page 625
[8]
Lindsay M. Oberman, Peter G. Enticott, Manuel F. Casanova, Alexander Rotenberg, Alvaro Pascual-Leone, and James T. McCracken
Autism Research, 2016, Volume 9, Number 2, Page 184
[9]
Yao Wang, Marie K. Hensley, Allan Tasman, Lonnie Sears, Manuel F. Casanova, and Estate M. Sokhadze
Applied Psychophysiology and Biofeedback, 2016, Volume 41, Number 1, Page 47
[10]
Paulo S. Boggio, Manish K. Asthana, Thiago L. Costa, Cláudia A. Valasek, and Ana A. C. Osório
Frontiers in Neuroscience, 2015, Volume 9
[11]
Manuel F. Casanova, Estate Sokhadze, Ioan Opris, Yao Wang, and Xiaoli Li
Acta Paediatrica, 2015, Volume 104, Number 4, Page 346
[12]
Chandramouli Krishnan, Luciana Santos, Mark D. Peterson, and Margaret Ehinger
Brain Stimulation, 2015, Volume 8, Number 1, Page 76
[13]
Manuel Fernando Casanova, Marie K. Hensley, Estate M. Sokhadze, Ayman S. El-Baz, Yao Wang, Xiaoli Li, and Lonnie Sears
Frontiers in Human Neuroscience, 2014, Volume 8
[14]
Susan E. Levy and Susan L. Hyman
Child and Adolescent Psychiatric Clinics of North America, 2015, Volume 24, Number 1, Page 117
[15]
Estate M. Sokhadze, Ayman S. El-Baz, Allan Tasman, Lonnie L. Sears, Yao Wang, Eva V. Lamina, and Manuel F. Casanova
Applied Psychophysiology and Biofeedback, 2014, Volume 39, Number 3-4, Page 237
[16]
Richard P. Chi and Allan W. Snyder
Medical Hypotheses, 2014, Volume 83, Number 5, Page 614
[17]
Lindsay M. Oberman, Alexander Rotenberg, and Alvaro Pascual-Leone
Journal of Autism and Developmental Disorders, 2015, Volume 45, Number 2, Page 524
[18]
Thomas Kammer and Manfred Spitzer
Current Opinion in Psychiatry, 2012, Volume 25, Number 6, Page 535

Comments (0)

Please log in or register to comment.
Log in