Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Active DNA Aβ42 vaccination as immunotherapy for Alzheimer disease

Doris Lambracht-Washington
  • Department of Neurology and Neurotherapeutics, Alzheimer’s Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roger Rosenberg
  • Department of Neurology and Neurotherapeutics, Alzheimer’s Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-11-20 | DOI: https://doi.org/10.2478/s13380-012-0037-6

Abstract

As a neurodegenerative disorder, Alzheimer disease (AD) is the most common form of dementia found in the aging population. Immunotherapy with passive or active immunizations targeting amyloid beta (Aβ) build-up in the brain may provide a possible treatment option and may help prevent AD from progressing. A number of passive immunizations with anti-Aβ42 antibodies are in different phases of clinical trials. One active immunization approach, AN-1792, was stopped after the development of autoimmune encephalitis in 6% of patients and a second one, CAD106, in which a small Aβ epitope is used, is currently in safety and tolerability studies. Besides active immunizations with proteins or peptides, active immunizations using DNA which codes for the protein against which the immune response will be directed, so called genetic immunizations, provide additional safety as the immune response in DNA immunizations differs quantitatively and qualitatively from the response elicited by peptide immunizations. We summarize in this review our data using DNA Aβ42 immunizations in mouse models and discuss the results together with the results presented by many other groups working on a DNA vaccine as treatment option for AD.

Keywords: Alzheimer’s disease; Amyloid beta; Immunotherapy; Vaccination

  • [1] Götz J., Chen F., van Dorpe J., Nitsch R. M., Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Abeta 42 fibrils, Science, 2001, 293, 1491–1495 http://dx.doi.org/10.1126/science.1062097CrossrefGoogle Scholar

  • [2] Oddo S., Caccamo A., Kitazawa M., Tseng B. P., LaFerla F. M., Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease, Neurobiol. Aging, 2003, 24, 1063–1070 http://dx.doi.org/10.1016/j.neurobiolaging.2003.08.012CrossrefGoogle Scholar

  • [3] Hardy J., New insights into the genetics of Alzheimer’s disease, Ann. Med., 1996, 28, 255–258 http://dx.doi.org/10.3109/07853899609033127CrossrefGoogle Scholar

  • [4] Selkoe D. J., Amyloid beta-protein and the genetics of Alzheimer’s disease, J. Biol. Chem., 1996, 271, 18295–18298 Google Scholar

  • [5] Hardy J., Selkoe D. J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 2002, 297, 353–356 http://dx.doi.org/10.1126/science.1072994CrossrefGoogle Scholar

  • [6] Bertram L., Tanzi R. E., The current status of Alzheimer’s disease genetics: what do we tell the patients?, Pharmacol. Res., 2004, 50, 385–396 http://dx.doi.org/10.1016/j.phrs.2003.11.018CrossrefGoogle Scholar

  • [7] Rosenberg R. N., Translational research on the way to effective therapy for Alzheimer’s disease, Arch. Gen. Psychiatry, 2005, 62, 1186–1192 http://dx.doi.org/10.1001/archpsyc.62.11.1186CrossrefGoogle Scholar

  • [8] Jonsson T., Atwal J. K., Steinberg S., Snaedal J., Jonsson P. V., Bjornsson S., et al., A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline, Nature, 2012, 488, 96–99 http://dx.doi.org/10.1038/nature11283CrossrefWeb of ScienceGoogle Scholar

  • [9] Wadman M., US government sets out Alzheimer’s plan, Nature, 2012, 485, 426–427 http://dx.doi.org/10.1038/485426aCrossrefWeb of ScienceGoogle Scholar

  • [10] Adolfsson O., Pihlgren M., Toni N., Varisco Y., Buccarello A. L., Antoniello K., et al., An Effector-reduced anti-β-amyloid (Aβ) antibody with unique Aβ binding properties promotes neuroprotection and glial engulfment of Aβ, J. Neurosci., 2012, 32, 9677–9689 http://dx.doi.org/10.1523/JNEUROSCI.4742-11.2012Web of ScienceCrossrefGoogle Scholar

  • [11] Blennow K., Zetterberg H., Rinne J. O., Salloway S., Wei J., Black R., et al., Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease, Arch. Neurol., 2012, 69, 1002–1010 http://dx.doi.org/10.1001/archneurol.2012.90CrossrefWeb of ScienceGoogle Scholar

  • [12] Farlow M., Arnold S. E., van Dyck C. H., Aisen P. S., Snider B. J., Porsteinsson A. P., et al., Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease, Alzheimers Dement., 2012, 8, 261–271 http://dx.doi.org/10.1016/j.jalz.2011.09.224CrossrefGoogle Scholar

  • [13] Relkin N. R., Szabo P., Adamiak B., Burgut T., Monthe C., Lent R. W., et al., 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease, Neurobiol. Aging, 2009, 30, 1728–1736 http://dx.doi.org/10.1016/j.neurobiolaging.2007.12.021CrossrefGoogle Scholar

  • [14] Relkin N., Bettger L., Tsakanikas D., Ravdin L., Three-year follow-up on the IVIg for Alzheimer’s phase II study, Alzheimers Dement., 2012, 8,Suppl., P589/P3–381 CrossrefGoogle Scholar

  • [15] Bateman R. J., Xiong C., Benzinger T. L., Fagan A. M., Goate A., Fox N. C., et al., Clinical and biomarker changes in dominantly inherited Alzheimer’s disease, N. Engl. J. Med., 2012, 367, 795–804 http://dx.doi.org/10.1056/NEJMoa1202753CrossrefWeb of ScienceGoogle Scholar

  • [16] Miller G., News focus: Stopping Alzheimer’s before it starts, Science, 2012, 337, 790–792 http://dx.doi.org/10.1126/science.337.6096.790Web of ScienceCrossrefGoogle Scholar

  • [17] Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al., Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein, Nature, 1995, 373, 523–527 http://dx.doi.org/10.1038/373523a0CrossrefGoogle Scholar

  • [18] Schenk D., Barbour R., Dunn W., Gordon G., Grajeda H., Guido T., et al., Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse, Nature, 1999, 400, 173–177 http://dx.doi.org/10.1038/22124CrossrefGoogle Scholar

  • [19] Janus C., Pearson J., McLaurin J., Mathews P. M., Jiang Y., Schmidt S. D., et al., A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease, Nature, 2000, 408, 979–982 http://dx.doi.org/10.1038/35050110CrossrefGoogle Scholar

  • [20] Morgan D., Diamond D. M., Gottschall P. E., Ugen K. E., Dickey C., Hardy J., et al., A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease, Nature, 2000, 408, 982–985 http://dx.doi.org/10.1038/35050116CrossrefGoogle Scholar

  • [21] Fox N. C., Black R. S., Gilman S., Rossor M. N., Griffith S. G., Jenkins L., et al., Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease, Neurology, 2005, 64, 1563–1572 http://dx.doi.org/10.1212/01.WNL.0000159743.08996.99CrossrefGoogle Scholar

  • [22] Gilman S., Koller M., Black R. S., Jenkins L., Griffith S. G., Fox N. C., et al., Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial, Neurology, 2005, 64, 1553–1562 http://dx.doi.org/10.1212/01.WNL.0000159740.16984.3CCrossrefGoogle Scholar

  • [23] Holmes C., Boche D., Wilkinson D., Yadegarfar G., Hopkins V., Bayer A., et al., Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial, Lancet, 2008, 372, 216–223 http://dx.doi.org/10.1016/S0140-6736(08)61075-2CrossrefGoogle Scholar

  • [24] Buttini M., Masliah E., Barbour R., Grajeda H., Motter R., Johnson-Wood K., et al., Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer’s disease, J. Neurosci., 2005, 25, 9096–9101 http://dx.doi.org/10.1523/JNEUROSCI.1697-05.2005CrossrefGoogle Scholar

  • [25] Serrano-Pozo A., William C. M., Ferrer I., Uro-Coste E., Delisle M. B., Maurage C. A., et al., Beneficial effect of human anti-amyloid-beta active immunization on neurite morphology and tau pathology, Brain, 2010, 133, 1312–1327 http://dx.doi.org/10.1093/brain/awq056CrossrefWeb of ScienceGoogle Scholar

  • [26] Winblad B., Andreasen N., Minthon L., Floesser A., Imbert G., Dumortier T., et al., Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-inhuman study, Lancet Neurol., 2012, 11, 597–604 http://dx.doi.org/10.1016/S1474-4422(12)70140-0Google Scholar

  • [27] Bard F, Fox M, Friedrich S, Seubert P, Schenk D, Kinney GG, Yednock T. [Sustained levels of antibodies against Aβ in amyloid-rich regions of the CNS following intravenous dosing in human APP transgenic mice. Exp Neurol. 2012, 238(1):38–43] http://dx.doi.org/10.1016/j.expneurol.2012.07.022Web of ScienceCrossrefGoogle Scholar

  • [28] Monsonego A., Zota V., Karni A., Krieger J. I., Bar-Or A., Bitan G., et al., Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease, J. Clin. Invest., 2003, 112, 415–422 Google Scholar

  • [29] Monsonego A., Imitola J., Petrovic S., Zota V., Nemirovsky A., Baron R., et al., Abeta-induced meningoencephalitis is IFN-gamma-dependent and is associated with T cell-dependent clearance of Abeta in a mouse model of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2006, 103, 5048–5053 http://dx.doi.org/10.1073/pnas.0506209103CrossrefGoogle Scholar

  • [30] Qu B., Rosenberg R. N., Li L., Boyer P. J., Johnston S. A., Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease, Arch. Neurol., 2004, 61, 1859–1864 http://dx.doi.org/10.1001/archneur.61.12.1859CrossrefGoogle Scholar

  • [31] Qu B., Boyer P. J., Johnston S. A., Hynan L. S., Rosenberg R. N., Aβ42 gene vaccination reduces brain amyloid plaque burden in transgenic mice, J. Neurol. Sci., 2006, 244, 151–158 http://dx.doi.org/10.1016/j.jns.2006.02.006CrossrefGoogle Scholar

  • [32] Qu B.-X., Xiang Q., Li L., Johnston S. A., Hynan L. S., Rosenberg R. N., Aβ42 gene vaccine prevents Aβ42 deposition in brain of double transgenic mice, J. Neurol. Sci., 2007, 260, 204–213 http://dx.doi.org/10.1016/j.jns.2007.05.012CrossrefWeb of ScienceGoogle Scholar

  • [33] Qu B. X., Lambracht-Washington D., Fu M., Eagar T. N., Stüve O., Rosenberg R. N., Analysis of three plasmid systems for use in DNA A beta 42 immunization as therapy for Alzheimer’s disease, Vaccine, 2010, 28, 5280–5287 http://dx.doi.org/10.1016/j.vaccine.2010.05.054Web of ScienceCrossrefGoogle Scholar

  • [34] Kim H. D., Jin J. J., Maxwell J. A., Fukuchi K., Enhancing Th2 immune responses against amyloid protein by a DNA prime-adenovirus boost regimen for Alzheimer’s disease, Immunol. Lett., 2007, 15, 30–38 http://dx.doi.org/10.1016/j.imlet.2007.06.006Web of ScienceCrossrefGoogle Scholar

  • [35] Movsesyan N., Ghochikyan A., Mkrtichyan M., Petrushina I., Davtyan H., Olkhanud P. B., et al., Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine - a novel immunotherapeutic strategy, PLoS ONE, 2008, 3, e2124 http://dx.doi.org/10.1371/journal.pone.0002124CrossrefGoogle Scholar

  • [36] DaSilva K. A., Brown M. E., McLaurin J., Reduced oligomeric and vascular amyloid-beta following immunization of TgCRND8 mice with an Alzheimer’s DNA vaccine, Vaccine, 2009, 27, 1365–1376 http://dx.doi.org/10.1016/j.vaccine.2008.12.044Web of ScienceGoogle Scholar

  • [37] Davtyan H., Mkrtichyan M., Movsesyan N., Petrushina I., Mamikonyan G., Cribbs D. H., et al., DNA prime-protein boost increased the titer, avidity and persistence of anti-Abeta antibodies in wild-type mice, Gene Ther., 2010, 17, 261–271 http://dx.doi.org/10.1038/gt.2009.140CrossrefWeb of ScienceGoogle Scholar

  • [38] Lambracht-Washington D., Qu B. X., Fu M., Eagar T. N., Stüve O., Rosenberg R. N., DNA beta-amyloid (1–42) trimer immunization for Alzheimer disease in a wild-type mouse model, JAMA, 2009, 302, 1796–1802 http://dx.doi.org/10.1001/jama.2009.1547CrossrefGoogle Scholar

  • [39] Lambracht-Washington D., Qu B. X., Fu M., Anderson L. D. Jr., Stüve O., Eagar T. N., et al., DNA Immunization against Amyloid beta 42 has high potential as safe therapy for Alzheimer’s Disease as it diminishes antigen specific Th1 and Th17 cell proliferation, Cell. Mol. Neurobiol., 2011, 31, 867–874 http://dx.doi.org/10.1007/s10571-011-9680-7CrossrefWeb of ScienceGoogle Scholar

  • [40] Lemere C. A., Maier M., Peng Y., Jiang L., Seabrook T. J., Novel Abeta immunogens: is shorter better?, Curr. Alzheimer Res., 2007, 4, 427–436 http://dx.doi.org/10.2174/156720507781788800CrossrefWeb of ScienceGoogle Scholar

  • [41] Maier M., Seabrook T. J., Lazo N. D., Jiang L., Das P., Janus C., et al., Short amyloid-beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer’s disease mouse model in the absence of an Abeta-specific cellular immune response, J. Neurosci., 2006, 26, 4717–4728 http://dx.doi.org/10.1523/JNEUROSCI.0381-06.2006CrossrefGoogle Scholar

  • [42] Zou J., Yao Z., Zhang G., Wang H., Xu J., Yew D. T., et al., Vaccination of Alzheimer’s model mice with adenovirus vector containing quadrivalent foldable Aβ1-15 reduces Aβ burden and behavioral impairment without Aβ-specific T cell response, J. Neurol. Sci., 2008, 272, 87–98 http://dx.doi.org/10.1016/j.jns.2008.05.003CrossrefWeb of ScienceGoogle Scholar

  • [43] Lambracht-Washington D., Qu B. X., Fu M., Stüve O., Eagar T. N., Rosenberg R. N., A regulatory immune response after DNA vaccination against amyloid beta 42, Alzheimers Dement., 2012, 8,Suppl., P201/P1–272 CrossrefGoogle Scholar

  • [44] Subramanian S., Divya Shree A. N., Enhanced Th2 immunity after DNA prime-protein boost immunization with amyloid beta (1–42) plus CpG oligodeoxynucleotides in aged rats, Neurosci. Lett., 2008, 436, 219–222 http://dx.doi.org/10.1016/j.neulet.2008.03.024Web of ScienceCrossrefGoogle Scholar

  • [45] Woodland D. L., Jump-starting the immune system: prime-boosting comes of age, Trends Immunol., 2004, 25, 98–104 http://dx.doi.org/10.1016/j.it.2003.11.009CrossrefGoogle Scholar

  • [46] Lambracht-Washington D., Qu B. X., Fu M., Anderson L. D. Jr., Stüve O., Eagar T. N., et al., A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer disease, J. Neuroimmunol., 2012, (in press) Web of ScienceGoogle Scholar

  • [47] Fleisher A. S., Chen K., Liu X., Roontiva A., Thiyyagura P., Ayutyanont N., et al., Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease, Arch. Neurol., 2011, 68, 1404–1411 http://dx.doi.org/10.1001/archneurol.2011.150CrossrefGoogle Scholar

About the article

Published Online: 2012-11-20

Published in Print: 2012-12-01


Citation Information: Translational Neuroscience, Volume 3, Issue 4, Pages 307–313, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-012-0037-6.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
K. Rajasekhar and Thimmaiah Govindaraju
RSC Advances, 2018, Volume 8, Number 42, Page 23780
[2]
Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles R. Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan de Silva, Giuseppe Di Giovanni, Claude M. Wischik, and Patrick R. Hof
Progress in Neurobiology, 2017, Volume 151, Page 101
[3]
Elvira Valera, Brian Spencer, and Eliezer Masliah
Neurotherapeutics, 2016, Volume 13, Number 1, Page 179
[4]
[5]
Jeremy J Kudrna and Kenneth E Ugen
Human Vaccines & Immunotherapeutics, 2015, Volume 11, Number 8, Page 1921
[7]
T. Bucky Jones
Experimental Neurology, 2014, Volume 258, Page 78
[8]
Kenji Okuda, Yoshiyuki Wada, and Masaru Shimada
Vaccines, 2014, Volume 2, Number 1, Page 89

Comments (0)

Please log in or register to comment.
Log in