Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

IMPACT FACTOR 2018: 2.038

CiteScore 2018: 1.90

SCImago Journal Rank (SJR) 2018: 0.665
Source Normalized Impact per Paper (SNIP) 2018: 0.786

Open Access
See all formats and pricing
More options …

Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain

Roi Kadosh
Published Online: 2013-03-07 | DOI: https://doi.org/10.2478/s13380-013-0104-7


Transcranial electrical stimulation (TES) includes methods such as transcranial direct current stimulation, transcranial random noise stimulation, and transcranial alternating current stimulation. These methods provide novel ways of enhancing human cognitive abilities for restorative purposes, or for general cognitive enhancement, by modulating neuronal activity. I discuss here the basic principles behind these methods and provide some illustrations of their efficacy in cognitive enhancement in those with typical and atypical brain function. Next, I outline some future directions for research that are have been largely neglected, such as the issue of individual differences, cognitive side effects, the efficacy of TES for use with healthy elderly populations, children with atypical development, and sports. The results observed thus far with TES as well as its future possibilities have significant implications for both basic and translational neuroscience.

Keywords: Cognitive enhancement; Brain stimulation; TDCS; TRNS; TACS; Development; Neuroethics; Aging

  • [1] Weiner R. D., Retrograde amnesia with electroconvulsive therapy: characteristics and implications, Arch. Gen. Psych., 2000, 57, 591–592 http://dx.doi.org/10.1001/archpsyc.57.6.591CrossrefGoogle Scholar

  • [2] Zaghi S., Thiele B., Pimentel D., Pimentel T., Fregni F., Assessment and treatment of pain with non-invasive cortical stimulation, Restor. Neurol. Neurosci., 2011, 29, 439–451 Google Scholar

  • [3] Antal A., Kriener N., Lang N., Boros K., Paulus W., Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine, Cephalalgia, 2011, 31, 820–828 http://dx.doi.org/10.1177/0333102411399349CrossrefGoogle Scholar

  • [4] Kalu U. G., Sexton C. E., Loo C. K., Ebmeier K. P., Transcranial direct current stimulation in the treatment of major depression: a metaanalysis, Psychol. Med., 2012, 42, 1791–1800 http://dx.doi.org/10.1017/S0033291711003059CrossrefGoogle Scholar

  • [5] Walsh V., Cowey A., Transcranial magnetic stimulation and cognitive neuroscience, Nat. Rev. Neurosci., 2000, 1, 73–79 http://dx.doi.org/10.1038/35036239CrossrefGoogle Scholar

  • [6] Walsh V., Pascual-Leone A., Transcranial magnetic stimulation: a neurochronometric of mind, MIT Press, Cambridge, MA, 2003 Google Scholar

  • [7] Allen E. A., Pasley B. N., Duong T., Freeman R. D., Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences, Science, 2007, 317, 1918–1921 http://dx.doi.org/10.1126/science.1146426CrossrefGoogle Scholar

  • [8] Shafi M. M., Westover M. B., Fox M. D., Pascual-Leone A., Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging, Eur. J. Neurosci., 2012, 35, 805–825 http://dx.doi.org/10.1111/j.1460-9568.2012.08035.xCrossrefGoogle Scholar

  • [9] Ruff C. C., Driver J., Bestmann S., Combining TMS and fMRI: From ‘virtual lesions’ to functional-network accounts of cognition, Cortex, 2009, 45, 1043–1049 http://dx.doi.org/10.1016/j.cortex.2008.10.012CrossrefGoogle Scholar

  • [10] Sandrini M., Umiltà C., Rusconi E., The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues, Neurosci. Biobehav. Rev., 2011, 35, 516–536 http://dx.doi.org/10.1016/j.neubiorev.2010.06.005CrossrefGoogle Scholar

  • [11] Gandiga P. C., Hummel F. C., Cohen L. G., Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation, Clin. Neurophysiol., 2006, 117, 845–850 http://dx.doi.org/10.1016/j.clinph.2005.12.003CrossrefGoogle Scholar

  • [12] Holland R., Crinion J., Can tDCS enhance treatment of aphasia after stroke?, Aphasiology, 2011, 26, 1169–1191 http://dx.doi.org/10.1080/02687038.2011.616925CrossrefGoogle Scholar

  • [13] Reis J., Fritsch B., Modulation of motor performance and motor learning by transcranial direct current stimulation, Curr. Opin. Neurol., 2011, 24, 590–596 http://dx.doi.org/10.1097/WCO.0b013e32834c3db0CrossrefGoogle Scholar

  • [14] Jacobson L., Koslowsky M., Lavidor M., tDCS polarity effects in motor and cognitive domains: a meta-analytical review, Exp. Brain Res., 2012, 216, 1–10 http://dx.doi.org/10.1007/s00221-011-2891-9CrossrefGoogle Scholar

  • [15] Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al., Transcranial direct current stimulation: state of the art 2008, Brain Stimul., 2008, 1, 206–223 http://dx.doi.org/10.1016/j.brs.2008.06.004CrossrefGoogle Scholar

  • [16] Bindman J. L., Lippold O. C. J., Redfearm J. W. T., The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects, J. Physiol., 1964, 172, 369–382 Google Scholar

  • [17] Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning, Neuron, 2010, 66, 198–204 http://dx.doi.org/10.1016/j.neuron.2010.03.035CrossrefGoogle Scholar

  • [18] Nitsche M. A., Paulus W., Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation, J. Physiol., 2000, 527, 633–639 http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00633.xCrossrefGoogle Scholar

  • [19] Kuo M.-F., Nitsche M.A., Effects of transcranial electrical stimulation on cognition, Clin. EEG Neurosci., 2012, 43, 192–199 http://dx.doi.org/10.1177/1550059412444975CrossrefGoogle Scholar

  • [20] Antal A., Nitsche M. A., Kruse W., Kincses T.Z., Hoffmann K.-P., Paulus W., Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans, J. Cogn. Neurosci., 2004, 16, 521–527 http://dx.doi.org/10.1162/089892904323057263CrossrefGoogle Scholar

  • [21] Terhune D. B., Tai S., Cowey A., Popescu T., Cohen Kadosh R., Enhanced cortical excitability in grapheme-color synesthesia and its modulation, Curr. Biol., 2011, 21, 2006–2009 http://dx.doi.org/10.1016/j.cub.2011.10.032CrossrefGoogle Scholar

  • [22] Dockery C. A., Hueckel-Weng R., Birbaumer N., Plewnia C., Enhancement of planning ability by transcranial direct current stimulation, J. Neurosci., 2009, 29, 7271–7277 http://dx.doi.org/10.1523/JNEUROSCI.0065-09.2009CrossrefGoogle Scholar

  • [23] Nitsche M., Paulus W., Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans, Neurology, 2001, 57, 1899–1901 http://dx.doi.org/10.1212/WNL.57.10.1899CrossrefGoogle Scholar

  • [24] Hattori Y., Moriwaki A., Hori Y., Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex, Neurosci. Lett., 1990, 116, 320–324 http://dx.doi.org/10.1016/0304-3940(90)90094-PCrossrefGoogle Scholar

  • [25] Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L.G., et al., Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning, Neuron, 2010, 66, 198–204 http://dx.doi.org/10.1016/j.neuron.2010.03.035CrossrefGoogle Scholar

  • [26] Márquez-Ruiz J., Leal-Campanario R., Sánchez-Campusano R., Molaee-Ardekani B., Wendling F., Miranda P. C., et al., Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits, Proc. Natl. Acad. Sci. USA, 2012, 109, 6710–671 http://dx.doi.org/10.1073/pnas.1121147109CrossrefGoogle Scholar

  • [27] Neves G., Cooke S. F., Bliss T. V. P., Synaptic plasticity, memory and the hippocampus: a neural network approach to causality, Nat. Rev. Neurosci., 2008, 9, 65–75 http://dx.doi.org/10.1038/nrn2303CrossrefGoogle Scholar

  • [28] Stagg C. J., Best J. G., Stephenson M. C., O’Shea J., Wylezinska M., Kincses Z.T., et al., Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation, J. Neurosci., 2009, 29, 5202–5209 http://dx.doi.org/10.1523/JNEUROSCI.4432-08.2009CrossrefGoogle Scholar

  • [29] Stagg C. J., Bachtiar V., Johansen-Berg H., The role of GABA in human motor learning, Curr. Biol., 2011, 21, 480–484 http://dx.doi.org/10.1016/j.cub.2011.01.069CrossrefGoogle Scholar

  • [30] Clark V. P., Coffman B. A., Trumbo M. C., Gasparovic C., Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study, Neurosci. Lett., 2011, 500, 67–71 http://dx.doi.org/10.1016/j.neulet.2011.05.244CrossrefGoogle Scholar

  • [31] Floyer-Lea A., Wylezinska M., Kincses T., Matthews P. M., Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning, J. Neurophysiol., 2006, 95, 1639–1644 http://dx.doi.org/10.1152/jn.00346.2005CrossrefGoogle Scholar

  • [32] Holland R., Leff A. P., Josephs O., Galea J. M., Desikan M., Price C. J., et al., Speech facilitation by left inferior frontal cortex stimulation, Curr. Biol., 2011, 21, 1403–1407 http://dx.doi.org/10.1016/j.cub.2011.07.021CrossrefGoogle Scholar

  • [33] Antal A., Kovács G., Chaieb L., Cziraki C., Paulus W., Greenlee M. W., Cathodal stimulation of human MT+ leads to elevated fMRI signal: a tDCS- fMRI study, Restor. Neurol. Neurosci., 2012, 30, 255–263 Google Scholar

  • [34] Keeser D., Meindl T., Bor J., Palm U., Pogarell O., Mulert C., et al., Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI, J. Neurosci., 2011, 31, 15284–15293 http://dx.doi.org/10.1523/JNEUROSCI.0542-11.2011CrossrefGoogle Scholar

  • [35] Wirth M., Rahman R. A., Kuenecke J., Koenig T., Horn H., Sommer W., et al., Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production, Neuropsychologia, 2011, 49, 3989–3998 http://dx.doi.org/10.1016/j.neuropsychologia.2011.10.015CrossrefGoogle Scholar

  • [36] Moliadze V., Antal A., Paulus W., Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes, Clin. Neurophysiol., 2010, 121, 2165–2171 http://dx.doi.org/10.1016/j.clinph.2010.04.033CrossrefGoogle Scholar

  • [37] Datta A., Bansal V., Diaz J., Patel J., Reato D., Bikson M., Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad, Brain Stimul., 2009, 2, 201–207 http://dx.doi.org/10.1016/j.brs.2009.03.005CrossrefGoogle Scholar

  • [38] Datta A., Truong D., Minhas P., Parra L. C., Bikson M., Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models, Front. Psych., 2012, doi: 10.3389/fpsyt.2012.00091 CrossrefGoogle Scholar

  • [39] Terney D., Chaieb L., Moliadze V., Antal A., Paulus W., Increasing human brain excitability by transcranial high-frequency random noise stimulation, J. Neurosci., 2008, 28, 14147–14155 http://dx.doi.org/10.1523/JNEUROSCI.4248-08.2008CrossrefGoogle Scholar

  • [40] Ambrus G. G., Paulus W., Antal A., Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS, Clin. Neurophysiol., 2010, 121, 1908–1914 http://dx.doi.org/10.1016/j.clinph.2010.04.020CrossrefGoogle Scholar

  • [41] Chaieb L., Kovacs G., Cziraki C., Greenlee M., Paulus W., Antal A., Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex, Exp. Brain Res., 2009, 198, 439–444 http://dx.doi.org/10.1007/s00221-009-1938-7CrossrefGoogle Scholar

  • [42] Chaieb L., Paulus W., Antal A., Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability, Neural Plast., 2011, 105927 Google Scholar

  • [43] Fertonani A., Pirulli C., Miniussi C., Random noise stimulation improves neuroplasticity in perceptual learning, J. Neurosci., 2011, 31, 15416–15423 http://dx.doi.org/10.1523/JNEUROSCI.2002-11.2011CrossrefGoogle Scholar

  • [44] Snowball A., Tachtsidis I., Popescu T., Thompson J., Delazer M., Zamarian L., et al., Inducing specific short- and long-term alterations in mathematical competence and cerebral haemodynamics using non-invasive brain stimulation (submitted) Google Scholar

  • [45] Kanai R., Chaieb L., Antal A., Walsh V., Paulus W., Frequency-dependent electrical stimulation of the visual cortex, Curr. Biol., 2008, 18, 1839–1843 http://dx.doi.org/10.1016/j.cub.2008.10.027CrossrefGoogle Scholar

  • [46] Zaghi S., Acar M., Hultgren B., Boggio P. S., Fregni F., Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation, Neuroscientist, 2010, 16, 285–307 http://dx.doi.org/10.1177/1073858409336227CrossrefGoogle Scholar

  • [47] Wehr M., Laurent G., Odour encoding by temporal sequences of firing in oscillating neural assemblies, Nature, 1996, 384, 162–166 http://dx.doi.org/10.1038/384162a0CrossrefGoogle Scholar

  • [48] Gross J., Timmermann L., Kujala J., Dirks M., Schmitz F., Salmelin R., et al., The neural basis of intermittent motor control in humans, Proc. Natl. Acad. Sci. USA, 2002, 99, 2299–2302 http://dx.doi.org/10.1073/pnas.032682099CrossrefGoogle Scholar

  • [49] Rutishauser U., Ross I. B., Mamelak A. N., Schuman E. M., Human memory strength is predicted by theta-frequency phase-locking of single neurons, Nature, 2010, 464, 903–907 http://dx.doi.org/10.1038/nature08860CrossrefGoogle Scholar

  • [50] Singer W., Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., 1993, 55, 349–374 http://dx.doi.org/10.1146/annurev.ph.55.030193.002025CrossrefGoogle Scholar

  • [51] Thut G., Miniussi C., Gross J., The functional importance of rhythmic activity in the brain, Curr. Biol., 2012, 22, R658–R663 http://dx.doi.org/10.1016/j.cub.2012.06.061CrossrefGoogle Scholar

  • [52] Academy of Medical Sciences, British Academy, Royal Academy of Engineering, Royal Society, Human enhancement and the future of work: report from a joint workshop, 2012, http://www.acmedsci.ac.uk/p47prid102.html Google Scholar

  • [53] Hyman S. E., Cognitive enhancement: promises and perils, Neuron, 2011, 69, 595–598 http://dx.doi.org/10.1016/j.neuron.2011.02.012CrossrefGoogle Scholar

  • [54] Wagner T., Velero-Cabre A., Pascual-Leone A., Noninvasive human brain stimulation, Annu. Rev. Biomed. Eng., 2007, 9, 527–565 http://dx.doi.org/10.1146/annurev.bioeng.9.061206.133100CrossrefGoogle Scholar

  • [55] Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., et al., Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation, Proc. Natl. Acad. Sci. USA, 2009, 106, 1590–1595 http://dx.doi.org/10.1073/pnas.0805413106CrossrefGoogle Scholar

  • [56] Cohen Kadosh R., Soskic S., Iuculano T., Kanai R., Walsh V., Modulating neuronal activity produces specific and long lasting changes in numerical competence, Curr. Biol., 2010, 20, 2016–2020 http://dx.doi.org/10.1016/j.cub.2010.10.007CrossrefGoogle Scholar

  • [57] Stagg C. J., Jayaram G., Pastor D., Kincses Z. T., Matthews P. M., Johansen-Berg H., Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning, Neuropsychologia, 2011, 49, 800–804 http://dx.doi.org/10.1016/j.neuropsychologia.2011.02.009CrossrefGoogle Scholar

  • [58] Paulus W., Transcranial electrical stimulation (tES — tDCS; tRNS, tACS) methods, Neuropsychol. Rehabil., 2011, 21, 602–617 http://dx.doi.org/10.1080/09602011.2011.557292CrossrefGoogle Scholar

  • [59] Rothwell J. C., Clinical applications of noninvasive electrical stimulation: problems and potential, Clin. EEG Neurosci., 2012, 43, 209–214 http://dx.doi.org/10.1177/1550059412444973CrossrefGoogle Scholar

  • [60] Flöel A., Rösser N., Michka O., Knecht S., Breitenstein C., Noninvasive brain stimulation improves language learning, J. Cogn. Neurosci., 2008, 20, 1415–1422 http://dx.doi.org/10.1162/jocn.2008.20098CrossrefGoogle Scholar

  • [61] Turkeltaub P. E., Benson J., Hamilton R. H., Datta A., Bikson M., Coslett H. B., Left lateralizing transcranial direct current stimulation improves reading efficiency, Brain Stimul., 2012, 5, 201–207 http://dx.doi.org/10.1016/j.brs.2011.04.002CrossrefGoogle Scholar

  • [62] Vines B. W., Norton A. C., Schlaug G., Non-invasive brain stimulation enhances the effects of melodic intonation therapy, Front. Psychol., 2011, 2, 230 http://dx.doi.org/10.3389/fpsyg.2011.00230CrossrefGoogle Scholar

  • [63] Flöel A., Meinzer M., Kirstein R., Nijhof S., Deppe M., Knecht S., et al., Short-term anomia training and electrical brain stimulation, Stroke, 2011, 42, 2065–2067 http://dx.doi.org/10.1161/STROKEAHA.110.609032CrossrefGoogle Scholar

  • [64] Fridriksson J., Richardson J. D., Baker J. M., Rorden C., Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study, Stroke, 2011, 42, 819–821 http://dx.doi.org/10.1161/STROKEAHA.110.600288CrossrefGoogle Scholar

  • [65] Baker J. M., Rorden C., Fridriksson J., Using transcranial direct-current stimulation to treat stroke patients with aphasia, Stroke, 2010, 41, 1229–1236 http://dx.doi.org/10.1161/STROKEAHA.109.576785CrossrefGoogle Scholar

  • [66] Sparing R., Thimm M., Hesse M. D., Küst J., Karbe H., Fink G. R., Bidirectional alterations of interhemispheric parietal balance by noninvasive cortical stimulation, Brain, 2009, 132, 3011–3020 http://dx.doi.org/10.1093/brain/awp154CrossrefGoogle Scholar

  • [67] Monti A., Cogiamanian F., Marceglia S., Ferrucci R., Mameli F., Mrakic-Sposta S., et al., Improved naming after transcranial direct current stimulation in aphasia, J. Neurol. Neurosurg. Psychiatry, 2008, 79, 451–453 http://dx.doi.org/10.1136/jnnp.2007.135277CrossrefGoogle Scholar

  • [68] Lindenberg R., Renga V., Zhu L.L., Nair D., Schlaug G., Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients, Neurology, 2010, 75, 2176–2184 http://dx.doi.org/10.1212/WNL.0b013e318202013aCrossrefGoogle Scholar

  • [69] Gladwin T. E., den Uyl T. E., Fregni F. F., Wiers R. W., Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task, Neurosci. Lett., 2012, 512, 33–37 http://dx.doi.org/10.1016/j.neulet.2012.01.056CrossrefGoogle Scholar

  • [70] Teo F., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B., Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls, Front. Psychiatry, 2011, 2, 45 http://dx.doi.org/10.3389/fpsyt.2011.00045CrossrefGoogle Scholar

  • [71] Sandrini M., Fertonani A., Cohen L. G., Miniussi C., Double dissociation of working memory load effects induced by bilateral parietal modulation, Neuropsychologia, 2012, 50, 396–402 http://dx.doi.org/10.1016/j.neuropsychologia.2011.12.011CrossrefGoogle Scholar

  • [72] Cattaneo Z., Pisoni A., Papagno C., Transcranial direct current stimulation over Broca’s region improves phonemic and semantic fluency in healthy individuals, Neuroscience, 2011, 183, 64–70 http://dx.doi.org/10.1016/j.neuroscience.2011.03.058CrossrefGoogle Scholar

  • [73] Hsu T.-Y., Tseng L.-Y., Yu J.-X., Kuo W.-J., Hung D.L., Tzeng O.J., et al., Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex, Neuroimage, 2011, 56, 2249–2257 http://dx.doi.org/10.1016/j.neuroimage.2011.03.059CrossrefGoogle Scholar

  • [74] Sela T., Ivry R. B., Lavidor M., Prefrontal control during a semantic decision task that involves idiom comprehension: a transcranial direct current stimulation study, Neuropsychologia, 2012, 50, 2271–2280 http://dx.doi.org/10.1016/j.neuropsychologia.2012.05.031CrossrefGoogle Scholar

  • [75] Antal A., Chaieb L., Moliadze V., Monte-Silva K., Poreisz C., Thirugnanasambandam N., et al., Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans, Brain Stimul., 2010, 3, 230–237 http://dx.doi.org/10.1016/j.brs.2009.12.003CrossrefGoogle Scholar

  • [76] Poreisz C., Boros K., Antal A., Paulus W., Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients, Brain Res. Bull., 2007, 72, 208–214 http://dx.doi.org/10.1016/j.brainresbull.2007.01.004CrossrefGoogle Scholar

  • [77] Cohen Kadosh R., Levy N., O’Shea J., Shea N., Savulescu J., The neuroethics of non-invasive brain stimulation, Curr. Biol., 2012, 22, R108–R111 http://dx.doi.org/10.1016/j.cub.2012.01.013CrossrefGoogle Scholar

  • [78] Zimerman M., Hummel F. C., Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects, Front. Aging Neurosci., 2010, 2, 149 http://dx.doi.org/10.3389/fnagi.2010.00149CrossrefGoogle Scholar

  • [79] Berryhill M. E., Jones K. T., tDCS selectively improves working memory in older adults with more education, Neurosci. Lett., 2012, 521, 148–151 http://dx.doi.org/10.1016/j.neulet.2012.05.074CrossrefGoogle Scholar

  • [80] Ross L. A., McCoy D., Wolk D. A., Coslett H. B., Olson I.R., Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes, Front. Aging Neurosci., 2011, 3, 16 http://dx.doi.org/10.3389/fnagi.2011.00016CrossrefGoogle Scholar

  • [81] Flöel A., Suttorp W., Kohl O., Kürten J., Lohmann H., Breitenstein C., et al., Non-invasive brain stimulation improves object-location learning in the elderly, Neurobiol. Aging, 2012, 33, 1682–1689 http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.007CrossrefGoogle Scholar

  • [82] Hummel F. C., Heise K., Celnik P., Floel A., Gerloff C., Cohen L. G., Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex, Neurobiol. Aging, 2010, 31, 2160–2168 http://dx.doi.org/10.1016/j.neurobiolaging.2008.12.008CrossrefGoogle Scholar

  • [83] Krause B., Cohen Kadosh R., How transcranial electrical stimulation (TES) can improve learning disabilities: a new perspective for cognitive training, submitted Google Scholar

  • [84] Levy N., Clarke S., Neuroethics and psychiatry, Curr. Opin. Psych., 2008, 21, 568–571 http://dx.doi.org/10.1097/YCO.0b013e3283126769CrossrefGoogle Scholar

  • [85] Hilgetag C. C., Theoret H., Pascual-Leone A., Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex, Nat. Neurosci., 2001, 4, 953–957 http://dx.doi.org/10.1038/nn0901-953CrossrefGoogle Scholar

  • [86] Cohen Kadosh R., Iuculano T., Brain stimulation to the PPC and DLPFC reveals double dissociation between learning and automaticity, In: 17th Annual meeting of the organization for human brain mapping, Quebec City, Canada, Hum. Brain Mapp. Suppl., 2011, abstr. 2312 Google Scholar

  • [87] Cohen Kadosh R., Gertner L., Terhune D. B., Exceptional abilities in the spatial representation of numbers and time: insights from synaesthesia, Neuroscientist, 2012, 18, 208–215 http://dx.doi.org/10.1177/1073858411402835CrossrefGoogle Scholar

  • [88] Cohen Kadosh K., Cohen Kadosh R., Dick F., Johnson M. H., Developmental changes in effective connectivity in the emerging core face network, Cereb. Cortex, 2011, 21, 1389–1394 http://dx.doi.org/10.1093/cercor/bhq215CrossrefGoogle Scholar

  • [89] Cohen Kadosh K., Johnson M. H., Dick F., Cohen Kadosh R., Blakemore S. J., Effects of age, task performance and structural brain development on face processing, Cereb. Cortex, 2012, doi: 10.1093/ cercor/bhs150 [Epub ahead of print] CrossrefGoogle Scholar

  • [90] Giedd J. N., Rapoport J. L., Structural MRI of pediatric brain development: what have we learned and where are we going?, Neuron, 2010, 67, 728–734 http://dx.doi.org/10.1016/j.neuron.2010.08.040CrossrefGoogle Scholar

  • [91] Beddington J., Cooper C. L., Field J., Goswami U., Huppert F. A., Jenkins R., et al., The mental wealth of nations, Nature, 2008, 455, 1057–1059 http://dx.doi.org/10.1038/4551057aCrossrefGoogle Scholar

  • [92] Hamilton R., Messing S., Chatterjee A., Rethinking the thinking cap, Neurology, 2011, 76, 187–193 http://dx.doi.org/10.1212/WNL.0b013e318205d50dCrossrefGoogle Scholar

  • [93] Schermer M., On the argument that enhancement is “cheating”, J. Med. Ethics, 2008, 34, 85–8 http://dx.doi.org/10.1136/jme.2006.019646CrossrefGoogle Scholar

  • [94] Cogiamanian F., Marceglia S., Ardolino G., Barbieri S., Priori A., Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas, Eur. J. Neurosci., 2007, 26, 242–249 http://dx.doi.org/10.1111/j.1460-9568.2007.05633.xCrossrefGoogle Scholar

  • [95] Pascual-Leone A., Walsh V., Fast backprojections from the motion to the primary visual area necessary for visual awareness, Science, 2001, 292, 510–512 http://dx.doi.org/10.1126/science.1057099CrossrefGoogle Scholar

  • [96] Born R. T., Bradley D.C., Structure and function of visual area MT, Annu. Rev. Neurosci., 2005, 28, 157–189 http://dx.doi.org/10.1146/annurev.neuro.26.041002.131052CrossrefGoogle Scholar

  • [97] Adee S., Zap your brain into the zone: fast track to pure focus, In: New Scientist, London, UK: Reed Elsevier, 06/02/2012 Google Scholar

  • [98] You D. S., Kim D.-Y., Chun M. H., Jung S. E., Park S. J., Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients, Brain Lang., 2011, 119, 1–5 http://dx.doi.org/10.1016/j.bandl.2011.05.002CrossrefGoogle Scholar

  • [99] Marangolo P., Marinelli C. V., Bonifazi S., Fiori V., Ceravolo M. G., Provinciali L., et al., Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics, Behav. Brain Res., 2011, 225, 498–504 http://dx.doi.org/10.1016/j.bbr.2011.08.008CrossrefGoogle Scholar

  • [100] Fiori V., Coccia M., Marinelli C. V., Vecchi V., Bonifazi S., Ceravolo M. G., et al., Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects, J. Cogn. Neurosci., 2010, 23, 2309–2323 http://dx.doi.org/10.1162/jocn.2010.21579CrossrefGoogle Scholar

  • [101] Schneider H. D., Hopp J. P., The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism, Clin. Linguist. Phon. 2011, 25, 640–654 http://dx.doi.org/10.3109/02699206.2011.570852CrossrefGoogle Scholar

  • [102] Ferrucci R., Mameli F., Guidi I., Mrakic-Sposta S., Vergari M., Marceglia S., et al., Transcranial direct current stimulation improves recognition memory in Alzheimer disease, Neurology, 2008, 71, 493–498 http://dx.doi.org/10.1212/01.wnl.0000317060.43722.a3CrossrefGoogle Scholar

  • [103] Boggio P. S., Ferrucci R., Mameli F., Martins D., Martins O., Vergari M., et al., Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease, Brain Stimul., 2011, 5, 223–230 http://dx.doi.org/10.1016/j.brs.2011.06.006CrossrefGoogle Scholar

  • [104] Bolognini N., Fregni F., Casati C., Olgiati E., Vallar G., Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills, Brain Res., 2010, 1349, 76–89 http://dx.doi.org/10.1016/j.brainres.2010.06.053CrossrefGoogle Scholar

  • [105] Feurra M., Bianco G., Santarnecchi E., Del Testa M., Rossi A., Rossi S., Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials, J. Neurosci., 2011, 31, 12165–12170 http://dx.doi.org/10.1523/JNEUROSCI.0978-11.2011CrossrefGoogle Scholar

  • [106] Mulquiney P. G., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B., Improving working memory: Exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex, Clin. Neurophysiol., 2011, 122, 2384–2389 http://dx.doi.org/10.1016/j.clinph.2011.05.009CrossrefGoogle Scholar

  • [107] Ohn S. H., Park C.-I., Yoo W.-K., Ko M.-H., Choi K. P., Kim G.-M., et al., Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory, Neuroreport, 2008, 19, 43–47 http://dx.doi.org/10.1097/WNR.0b013e3282f2adfdCrossrefGoogle Scholar

  • [108] Jacobson L., Goren N., Lavidor M., Levy D. A., Oppositional transcranial direct current stimulation (tDCS) of parietal substrates of attention during encoding modulates episodic memory, Brain Res., 2012, 1439, 66–72 http://dx.doi.org/10.1016/j.brainres.2011.12.036CrossrefGoogle Scholar

  • [109] Ditye T., Jacobson L., Walsh V., Lavidor M., Modulating behavioral inhibition by tDCS combined with cognitive training, Exp. Brain Res., 2012, 219, 363–368 http://dx.doi.org/10.1007/s00221-012-3098-4CrossrefGoogle Scholar

  • [110] Weiss M., Lavidor M., When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities, J. Cogn. Neurosci., 2012, 24, 1826–1833 http://dx.doi.org/10.1162/jocn_a_00248CrossrefGoogle Scholar

  • [111] Sparing R., Dafotakis M., Meister I.G., Thirugnanasambandam N., Fink G. R., Enhancing language performance with non-invasive brain stimulation — a transcranial direct current stimulation study in healthy humans, Neuropsychologia, 2008, 46, 261–268 http://dx.doi.org/10.1016/j.neuropsychologia.2007.07.009CrossrefGoogle Scholar

  • [112] de Vries M. H., Barth A. C., Maiworm S., Knecht S., Zwitserlood P., Floel A., Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar, J. Cogn. Neurosci., 2010, 22, 2427–2436 http://dx.doi.org/10.1162/jocn.2009.21385CrossrefGoogle Scholar

About the article

Published Online: 2013-03-07

Published in Print: 2013-03-01

Citation Information: Translational Neuroscience, Volume 4, Issue 1, Pages 20–33, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0104-7.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rehana K. Leak, Edward J. Calabrese, Walter J. Kozumbo, Jeffrey M. Gidday, Thomas E. Johnson, James R. Mitchell, C. Keith Ozaki, Reinhard Wetzker, Aalt Bast, Regina G. Belz, Hans E. Bøtker, Sebastian Koch, Mark P. Mattson, Roger P. Simon, Randy L. Jirtle, and Melvin E. Andersen
Dose-Response, 2018, Volume 16, Number 3, Page 155932581878450
Imre Bard, George Gaskell, Agnes Allansdottir, Rui Vieira da Cunha, Peter Eduard, Juergen Hampel, Elisabeth Hildt, Christian Hofmaier, Nicole Kronberger, Sheena Laursen, Anna Meijknecht, Salvör Nordal, Alexandre Quintanilha, Gema Revuelta, Núria Saladié, Judit Sándor, Júlio Borlido Santos, Simone Seyringer, Ilina Singh, Han Somsen, Winnie Toonders, Helge Torgersen, Vincent Torre, Márton Varju, and Hub Zwart
Neuroethics, 2018
Roanne Hurley and Liana Machado
Journal of Clinical and Experimental Neuropsychology, 2018, Page 1
Thomas Finkenzeller, Sabine Würth, and Günter Amesberger
Journal of Applied Sport Psychology, 2018, Page 00
Simon Hanslmayr and Frederic Roux
Current Biology, 2017, Volume 27, Number 10, Page R385
Julien Q. M. Ly, Giulia Gaggioni, Sarah L. Chellappa, Soterios Papachilleos, Alexandre Brzozowski, Chloé Borsu, Mario Rosanova, Simone Sarasso, Benita Middleton, André Luxen, Simon N. Archer, Christophe Phillips, Derk-Jan Dijk, Pierre Maquet, Marcello Massimini, and Gilles Vandewalle
Nature Communications, 2016, Volume 7, Page 11828
Kim van Dun, Florian C. A. A. Bodranghien, Peter Mariën, and Mario U. Manto
Frontiers in Human Neuroscience, 2016, Volume 10
Ann Dowker, Amar Sarkar, and Chung Yen Looi
Frontiers in Psychology, 2016, Volume 7
Dave Siever
Biofeedback, 2015, Volume 43, Number 4, Page 180
Sharon Zmigrod, Lorenza S. Colzato, and Bernhard Hommel
Creativity Research Journal, 2015, Volume 27, Number 4, Page 353
James G. Wrightson, Rosie Twomey, Emma Z. Ross, and Nicholas J. Smeeton
Experimental Brain Research, 2015, Volume 233, Number 5, Page 1575
Roi Cohen Kadosh
Journal of Cognitive Psychology, 2015, Volume 27, Number 2, Page 141
Irene Tracey and Rod Flower
Nature Reviews Neuroscience, 2014, Volume 15, Number 12, Page 825
Hannah L. Filmer, Paul E. Dux, and Jason B. Mattingley
Trends in Neurosciences, 2014, Volume 37, Number 12, Page 742
Sarah Bate and Rachel J. Bennetts
Frontiers in Human Neuroscience, 2014, Volume 8
Saskia K. Nagel
Frontiers in Systems Neuroscience, 2014, Volume 8
Hannah Maslen, Julian Savulescu, Thomas Douglas, Neil Levy, and Roi Cohen Kadosh
The Lancet, 2013, Volume 382, Number 9896, Page 938
Hannah L. Filmer, Jason B. Mattingley, and Paul E. Dux
Cortex, 2013, Volume 49, Number 10, Page 2845

Comments (0)

Please log in or register to comment.
Log in