Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

IMPACT FACTOR 2018: 2.038

CiteScore 2018: 1.90

SCImago Journal Rank (SJR) 2018: 0.665
Source Normalized Impact per Paper (SNIP) 2018: 0.786

Open Access
See all formats and pricing
More options …

The olfactory system in Alzheimer’s disease: Pathology, pathophysiology and pathway for therapy

Tibor Kovács
Published Online: 2013-03-07 | DOI: https://doi.org/10.2478/s13380-013-0108-3


Olfaction is frequently mentioned as a “neglected sense”, although the olfactory system has several interesting and unique anatomical and physiological features. Olfactory involvement is present in several degenerative disorders, especially in Alzheimer’s disease (AD). The peripheral and central parts of the olfactory system are damaged even in the early stages of AD, manifesting in profound olfactory deficits. Besides the early pathology, the olfactory system may be involved in the pathogenesis of AD by providing a route of entry for pathological agents still unknown. In contrast to this olfactory vector hypothesis, the olfactory system can be used to deliver therapeutic agents in AD, such as nerve growth factor and insulin, by decreasing the side-effects of the therapy or providing a non-invasive method of delivery.

Keywords: Olfaction; Neurofibrillary tangles; Limbic system; Olfactory vector hypothesis; Alzheimer’s disease

  • [1] Querfurth H.W., LaFerla F.M., Alzheimer’s disease, N. Engl. J. Med., 2010, 362, 329–344 http://dx.doi.org/10.1056/NEJMra0909142CrossrefGoogle Scholar

  • [2] Kovács T., Mechanism of olfactory dysfunction in aging and neurodegenerative disorders, Ageing Res. Rev., 2004, 3, 215–232 http://dx.doi.org/10.1016/j.arr.2003.10.003CrossrefGoogle Scholar

  • [3] Blanchart A., López-Mascaraque L., From the periphery to the brain: wiring the olfactory system, Transl. Neurosci., 2011, 2, 293–309 http://dx.doi.org/10.2478/s13380-011-0038-xCrossrefGoogle Scholar

  • [4] Gloor P., The temporal lobe and limbic system, Oxford University Press, New York, 1997 Google Scholar

  • [5] Halász N., The vertebrate olfactory system: chemical neuroanatomy, function and development, Akadémiai Kiadó, Budapest, 1990 Google Scholar

  • [6] Talamo B.R., Rudel R., Kosik K.S., Lee V.M-Y., Neff S., Adelman L., et al., Pathological changes in olfactory neurons in patients with Alzheimer’s disease, Nature, 1989, 337, 736–739 http://dx.doi.org/10.1038/337736a0CrossrefGoogle Scholar

  • [7] Lee J.H., Goedert M., Hill W.D., Lee V.M., Trojanowski J.Q., Tau proteins are abnormally expressed in olfactory epithelium of Alzheimer patients and developmentally regulated in human fetal spinal cord, Exp. Neurol., 1993, 121, 93–105 http://dx.doi.org/10.1006/exnr.1993.1074CrossrefGoogle Scholar

  • [8] Yamagishi M., Ishizuka Y., Seki K., Pathology of olfactory mucosa in patients with Alzheimer’s disease, Ann. Otol. Rhinol. Laryngol., 1994, 103, 421–427 CrossrefGoogle Scholar

  • [9] Tabaton M., Cammarata S., Mancardi G.L., Cordone G., Perry G., Loeb C., Abnormal tau-reactive filaments in olfactory mucosa in biopsy specimens of patients with probable Alzheimer’s disease, Neurology, 1991, 41, 391–394 http://dx.doi.org/10.1212/WNL.41.3.391CrossrefGoogle Scholar

  • [10] Trojanowski J.Q., Newman P.D., Hill W.D., Lee V.M.Y., Human olfactory epithelium in normal aging, Alzheimer’s disease, and other neurodegenerative disorders, J. Comp. Neurol., 1991, 310, 365–376 http://dx.doi.org/10.1002/cne.903100307CrossrefGoogle Scholar

  • [11] Kaakkola S., Palo J., Malmberg H., Sulkava R., Virtanen I., Neurofilament profile in olfactory mucosa of patients with a clinical diagnosis of Alzheimer’s disease, Virchows Arch., 1994, 424, 315–319 http://dx.doi.org/10.1007/BF00194617CrossrefGoogle Scholar

  • [12] Kishikawa M., Iseki M., Sakae M., Kawaguchi S., Fujii H., Early diagnosis of Alzheimer’s?, Nature, 1994, 369, 365–366 http://dx.doi.org/10.1038/369365a0CrossrefGoogle Scholar

  • [13] Hock C., Golombowski S., Mullerspahn F., Peschel O., Riederer A., Probst A., et al., Histological markers in nasal mucosa of patients with Alzheimer’s disease, Eur. Neurol., 1998, 40, 31–36 http://dx.doi.org/10.1159/000007953CrossrefGoogle Scholar

  • [14] Arnold S.E., Lee E.B., Moberg P.J., Stutzbach L, Kazi H., Han L-Y., et al., Olfactory epithelium amyloid-beta and paired helical filaments-tau pathology in Alzheimer’s disease, Ann. Neurol., 2010, 67, 462–469 http://dx.doi.org/10.1002/ana.21910CrossrefGoogle Scholar

  • [15] Duda J.E., Arnold S.E., Lee V.M.Y., Trojanowski J.Q., The expression of α-, β-, and γ-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases, Exp. Neurol., 1999, 160, 515–522 http://dx.doi.org/10.1006/exnr.1999.7228CrossrefGoogle Scholar

  • [16] Crino P.B., Martin J.A., Hill W.D., Greenberg B., Lee V.M., Trojanowski J.Q., Beta-amyloid peptide and amyloid precursor proteins in olfactory mucosa of patients with Alzheimer’s disease, Parkinson’s disease, and Down syndrome, Ann. Otol. Rhinol. Laryngol., 1995, 104, 655–661 CrossrefGoogle Scholar

  • [17] Yamagishi M., Getchell M.L., Takami S., Getchell T.V., Increased density of olfactory receptor neurons immunoreactive for apolipoprotein E in patients with Alzheimer’s disease, Ann. Otol. Rhinol. Laryngol., 1998, 107, 421–426 CrossrefGoogle Scholar

  • [18] Getchell M.L., Shah D.S., Buch S.K., Davis D.G., Getchell T.V., 3-Nitrotyrosine immunoreactivity in olfactory receptor neurons of patients with Alzheimer’s disease: implications for impaired odor sensitivity, Neurobiol. Aging, 2003, 24, 663–673 http://dx.doi.org/10.1016/S0197-4580(02)00195-1CrossrefGoogle Scholar

  • [19] Kulkarni-Narla A., Getchell T.V., Schmitt F.A., Getchell M.L., Manganese and copper-zinc superoxide dismutases in the human olfactory mucosa: increased immunoreactivity in Alzheimer’s disease, Exp. Neurol., 1996, 140, 115–125 http://dx.doi.org/10.1006/exnr.1996.0122CrossrefGoogle Scholar

  • [20] Chuah M.I., Getchell M.L., Metallothionein in olfactory mucosa of Alzheimer’s disease patients and apoE-deficient mice, Neuroreport, 1999, 10, 1919–1924 http://dx.doi.org/10.1097/00001756-199906230-00023CrossrefGoogle Scholar

  • [21] Perry G., Castellani R.J., Smith M.A., Harris P.L.R., Kubat Z., Ghanbari K., et al., Oxidative damage in the olfactory system in Alzheimer’s disease, Acta Neuropathol., 2003, 106, 552–556 http://dx.doi.org/10.1007/s00401-003-0761-7CrossrefGoogle Scholar

  • [22] Yamagishi M., Takami S., Getchell T.V., Ontogenetic expression of spot 35 protein (calbindin-D28k) in human olfactory receptor neurons and its decrease in Alzheimer’s disease patients, Ann. Otol. Rhinol. Laryngol., 1996, 105, 132–139 Google Scholar

  • [23] Bhatnagar K.P., Kennedy R.C., Baron G., Greenberg R.A., Number of mitral cells and the bulb volume in the aging human olfactory bulb: a quantitative morphological study, Anat. Rec., 1987, 218, 73–87 http://dx.doi.org/10.1002/ar.1092180112CrossrefGoogle Scholar

  • [24] Smith R.L., Baker H., Greer C.A., Immunohistochemical analysis of the human olfactory bulb, J. Comp. Neurol., 1993, 333, 519–530 http://dx.doi.org/10.1002/cne.903330405CrossrefGoogle Scholar

  • [25] Struble R.G., Clark H.B., Olfactory bulb lesions in Alzheimer’s disease, Neurobiol. Aging, 1991, 13, 469–473 http://dx.doi.org/10.1016/0197-4580(92)90074-8CrossrefGoogle Scholar

  • [26] Kovács T., Cairns N.J., Lantos P.L., β-Amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease, Neuropathol. Appl. Neurobiol., 1999, 25, 481–491 http://dx.doi.org/10.1046/j.1365-2990.1999.00208.xCrossrefGoogle Scholar

  • [27] Hoogland P.V., van den Berg R., Huisman E., Misrouted olfactory fibres and ectopic olfactory glomeruli in normal humans and in Parkinson and Alzheimer patients, Neuropathol. Appl. Neurobiol., 2003, 29, 303–311 http://dx.doi.org/10.1046/j.1365-2990.2003.00459.xCrossrefGoogle Scholar

  • [28] Loopuijt L.D., Sebens J.B., Loss of dopamine receptors in the olfactory bulb of patients with Alzheimer’s disease, Brain Res., 1990, 529, 239–244 http://dx.doi.org/10.1016/0006-8993(90)90833-WCrossrefGoogle Scholar

  • [29] Averback P., Two new lesions in Alzheimer’s disease, Lancet, 1983, 19, 1203 http://dx.doi.org/10.1016/S0140-6736(83)91256-4CrossrefGoogle Scholar

  • [30] Esiri M.M., Wilcock G.K., The olfactory bulbs in Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry, 1984, 47, 56–60 http://dx.doi.org/10.1136/jnnp.47.1.56CrossrefGoogle Scholar

  • [31] Mann D.M.A., Tucker C.M., Yates P.O., Alzheimer’s disease: an olfactory connection?, Mech. Ageing Dev., 1988, 42, 1–15 http://dx.doi.org/10.1016/0047-6374(88)90058-9CrossrefGoogle Scholar

  • [32] Ohm T.G., Braak H., Olfactory bulb changes in Alzheimer’s disease, Acta Neuropathol., 1987, 73, 365–369 http://dx.doi.org/10.1007/BF00688261CrossrefGoogle Scholar

  • [33] Hyman B.T., Arriagada P.V., van Hoesen G.W., Pathologic changes in the olfactory bulb in ageing and Alzheimer’s disease, Ann. N.Y. Acad. Sci., 1991, 640, 14–19 Google Scholar

  • [34] Reyes P.F., Deems D.A., Suarez M.G., Olfactory-related changes in Alzheimer’s disease: a quantitative neuropathologic study, Brain Res. Bull., 1993, 32, 1–5 http://dx.doi.org/10.1016/0361-9230(93)90310-8CrossrefGoogle Scholar

  • [35] ter Laak H.J., Renkawek K., van Workum F.P.A., The olfactory bulb in Alzheimer disease: a morphologic study of neuron loss, tangles, and senile plaques in relation to olfaction, Alz. Dis. Assoc. Dis., 1994, 8, 38–48 http://dx.doi.org/10.1097/00002093-199408010-00007CrossrefGoogle Scholar

  • [36] Arnold S.E., Smutzer G.S., Trojanowski J.Q., Moberg P.J., Cellular and molecular neuropathology of the olfactory epithelium and central olfactory pathways in Alzheimer’s disease and schizophrenia, Ann. NY Acad. Sci., 1998, 855, 762–775 http://dx.doi.org/10.1111/j.1749-6632.1998.tb10656.xCrossrefGoogle Scholar

  • [37] Kovacs I., Török I., Zombori J., Kása P., Cholinergic structures and neuropathologic alterations in the olfactory bulb of Alzheimer’s disease brain samples, Brain Res., 1998, 789, 167–170 http://dx.doi.org/10.1016/S0006-8993(98)00097-3CrossrefGoogle Scholar

  • [38] Christen-Zaech S., Kraftsik R., Pillevuit O., Kiraly M., Martins R., Khalili K., et al., Early olfactory involvement in Alzheimer’s disease, Can. J. Neurol. Sci., 2003, 30, 20–25 CrossrefGoogle Scholar

  • [39] Tsuboi Y., Wszolek Z.K., Graff-Radford N.R., Cookson N., Dickson D.W., Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein ɛ4, Neuropathol. Appl. Neurobiol., 2003, 29, 503–510 http://dx.doi.org/10.1046/j.1365-2990.2003.00453.xCrossrefGoogle Scholar

  • [40] Attems J., Lintner F., Jellinger K.A., Olfactory involvement in aging and Alzheimer’s disease: an autopsy study, J. Alzheimers Dis., 2005, 7, 149–157 Google Scholar

  • [41] Attems J., Jellinger K.A., Olfactory tau pathology in Alzheimer disease and mild cognitive impairment, Clin. Neuropathol., 2006, 25, 265–271 Google Scholar

  • [42] Fujishiro H., Tsuboi Y., Lin W.-L., Uchikado H., Dickson D.W., Colocalization of tau and α-synuclein in the olfactory bulb in Alzheimer’s disease with amygdala Lewy bodies, Acta Neuropathol., 2008, 116, 17–24 http://dx.doi.org/10.1007/s00401-008-0383-1CrossrefGoogle Scholar

  • [43] Saiz-Sanchez D., Ubeda-Bañon I., de la Rosa-Prieto C., Argandoña-Palacios L., Garcia-Muñozguren S., Insausti R., et al., Somatostatin, tau, and β-amyloid within the anterior olfactory nucleus in Alzheimer disease, Exp. Neurol., 2010, 223, 347–350 http://dx.doi.org/10.1016/j.expneurol.2009.06.010CrossrefGoogle Scholar

  • [44] Kovács T., Cairns N.J., Lantos P.L., Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages, Neuroreport, 2001, 12, 285–288 http://dx.doi.org/10.1097/00001756-200102120-00021CrossrefGoogle Scholar

  • [45] Braak H., Braak E., Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol., 1991, 82, 239–259 http://dx.doi.org/10.1007/BF00308809CrossrefGoogle Scholar

  • [46] Wisniewski H.M., Weigel J., Kotula L., Some neuropathological aspects of Alzheimer’s disease and its relevance to other disciplines, Neuropathol. Appl. Neurobiol., 1996, 22, 3–11 http://dx.doi.org/10.1111/j.1365-2990.1996.tb00839.xCrossrefGoogle Scholar

  • [47] Sengoku R., Saito Y., Ikemura M., Hatsuta H., Sakiyama Y., Kanemaru K., et al., Incidence and extent of Lewy body-related α-synucleinopathy in aging human olfactory bulb, J. Neuropathol. Exp. Neurol., 2008, 67, 1072–1083 http://dx.doi.org/10.1097/NEN.0b013e31818b4126CrossrefGoogle Scholar

  • [48] Beach T.G., White C.L. 3rd, Hladik C.L., Sabbagh M.N., Connor D.J., Shill H.A., et al., Olfactory bulb α-synucleinopathy has high specificity and sensitivity for Lewy body disorders, Acta Neuropathol., 2009, 117, 169–174 http://dx.doi.org/10.1007/s00401-008-0450-7CrossrefGoogle Scholar

  • [49] Attems J., Alpar A., Spence L., McParland S., Heikenwalder M., Ehlén M., et al., Clusters of secretagogin-expressing neurons in the aged human olfactory tract lack terminal differentiation, Proc. Natl. Acad. Sci. USA, 2012, 109, 6259–6264 http://dx.doi.org/10.1073/pnas.1203843109CrossrefGoogle Scholar

  • [50] Mundinano I-C., Caballero M-C., Ordónez C, Hernandez M., DiCaudo C., Marcilla I., et al., Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders, Acta Neuropathol., 2011, 122, 61–74 http://dx.doi.org/10.1007/s00401-011-0830-2CrossrefGoogle Scholar

  • [51] Davies D.C., Brooks J.W., Lewis D.A., Axonal loss from the olfactory tracts in Alzheimer’s disease, Neurobiol. Aging, 1993, 14, 353–357 http://dx.doi.org/10.1016/0197-4580(93)90121-QCrossrefGoogle Scholar

  • [52] Armstrong R.A., Syed A.B., Smith C.U.M., Density and cross-sectional areas of axons in the olfactory tract in control subjects and Alzheimer’s disease: an image analysis study, Neurol. Sci., 2008, 29, 23–27 http://dx.doi.org/10.1007/s10072-008-0854-0CrossrefGoogle Scholar

  • [53] Thomann P.A., Dos Santos V., Seidl U., Toro P., Essig M., Schröder J., MRI-derived atrophy of the olfactory bulb and tract in mild cognitive impairment and Alzheimer’s disease, J. Alzheimers Dis., 2009, 17, 213–221 Google Scholar

  • [54] Thomann P.A., Dos Santos V., Toro P., Schönknecht P., Essig M., Schröder J., Reduced olfactory bulb and tract volume in early Alzheimer’s disease — a MRI study, Neurobiol. Aging, 2009, 30, 838–841 http://dx.doi.org/10.1016/j.neurobiolaging.2007.08.001CrossrefGoogle Scholar

  • [55] Zatorre R.J., Jones-Gotman M., Evans A.C., Meyer E., Functional localization and lateralization of human olfactory cortex, Nature, 1992, 360, 339–340 http://dx.doi.org/10.1038/360339a0CrossrefGoogle Scholar

  • [56] Insausti R., Marcos P., Arroyo-Jiménez M.M., Blaizot X., Martínez-Marcos A., Comparative aspects of the olfactory portion of the entorhinal cortex and its projection to the hippocampus in rodents, nonhuman primates, and the human brain, Brain Res. Bull., 2002, 57, 557–560 http://dx.doi.org/10.1016/S0361-9230(01)00684-0CrossrefGoogle Scholar

  • [57] Prestia A., Drago V., Rasser P.E., Bonetti M., Thompson P.M., Frisoni G.B., Cortical changes in incipient Alzheimer’s disease, J. Alzheimers Dis., 2010, 22, 1339–1349 Google Scholar

  • [58] Murphy C, Jernigan T.L., Fennema-Notestine C., Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study, J. Int. Neuropsychol. Soc., 2003, 9, 459–471 http://dx.doi.org/10.1017/S1355617703930116CrossrefGoogle Scholar

  • [59] Li Y., Wang Y., Wu G., Shi F., Zhou L., Lin W., et al., Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features, Neurobiol. Aging, 2012, 33, 427.e15–30 http://dx.doi.org/10.1016/j.neurobiolaging.2010.11.008CrossrefGoogle Scholar

  • [60] Frisoni G.B., Prestia A., Rasser P.E., Bonetti M., Thompson P.M., In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer’s disease, J. Neurol., 2009, 256, 916–924 http://dx.doi.org/10.1007/s00415-009-5040-7CrossrefGoogle Scholar

  • [61] Cavedo E., Boccardi M., Ganzola R., Canu E., Beltramello A., Caltagirone C, et al., Local amygdala structural differences with 3T MRI in patients with Alzheimer disease, Neurology, 2011, 76, 727–733 http://dx.doi.org/10.1212/WNL.0b013e31820d62d9CrossrefGoogle Scholar

  • [62] Hedner M., Larsson M., Arnold N., Zucco G.M., Hummel T., Cognitive factors in odor detection, odor discrimination, and odor identification tasks, J. Clin. Exp. Neuropsychol., 2010, 32, 1062–1067 http://dx.doi.org/10.1080/13803391003683070CrossrefGoogle Scholar

  • [63] Laing D.G., Natural sniffing gives optimum odor perception for humans, Perception, 1983, 12, 99–107 http://dx.doi.org/10.1068/p120099CrossrefGoogle Scholar

  • [64] Sobel N., Thomason M.E., Stappen I., Tanner C.M., Tetrud J.W., Bower J.M., et al., An impairment in sniffing contributes to the olfactory impairment in Parkinson’s disease, Proc. Natl. Acad. Sci. USA, 2001, 98, 4154–4159 http://dx.doi.org/10.1073/pnas.071061598CrossrefGoogle Scholar

  • [65] Rahayel S., Frasnelli J., Joubert S., The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: a meta-analysis, Behav. Brain Res., 2012, 231, 60–74 http://dx.doi.org/10.1016/j.bbr.2012.02.047CrossrefGoogle Scholar

  • [66] Mesholam R.I., Moberg P.J., Mahr R.N., Doty R.L., Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases, Arch. Neurol., 1998, 55, 84–90 http://dx.doi.org/10.1001/archneur.55.1.84CrossrefGoogle Scholar

  • [67] McShane R.H., Nagy Z., Esiri M.M., King E., Joachim C., Sullivan N. et al., Anosmia in dementia is associated with Lewy bodies rather than Alzheimer’s pathology, J. Neurol. Neurosurg. Psychiatry, 2001, 70, 739–743 http://dx.doi.org/10.1136/jnnp.70.6.739CrossrefGoogle Scholar

  • [68] Olichney J.M., Murphy C., Hofstetter C.R., Foster K., Hansen L.A., Thal J.L., et al., Anosmia is very common in the Lewy body variant of Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry, 2005, 76, 1342–1347 http://dx.doi.org/10.1136/jnnp.2003.032003CrossrefGoogle Scholar

  • [69] Williams S.S., Williams J., Combrick M., Christie S., Smith A.D., McShane R., Olfactory impairment is more marked in patients with mild dementia with Lewy bodies than those with mild Alzheimer disease, J. Neurol. Neurosurg. Psychiatry, 2009, 80, 667–670 http://dx.doi.org/10.1136/jnnp.2008.155895CrossrefGoogle Scholar

  • [70] Sato T, Hanyu H, Kume K., Takada Y, Onuma T., Iwamoto T., Difference in olfactory dysfunction with dementia with Lewy bodies and Alzheimer’s disease, J. Am. Geriat. Soc., 2011, 59, 947–948 http://dx.doi.org/10.1111/j.1532-5415.2011.03380.xCrossrefGoogle Scholar

  • [71] Duyckaerts C., Delatour B., Patier M.C., Classification and basic pathology of Alzheimer disease, Acta Neuropathol., 2009, 118, 5–36 http://dx.doi.org/10.1007/s00401-009-0532-1CrossrefGoogle Scholar

  • [72] Doty R.L., Shaman P., Applebaum S.L., Giberson R., Siksorski L., Rosenberg L., Smell identification ability: changes with age, Science, 1984, 226, 1441–1443 http://dx.doi.org/10.1126/science.6505700CrossrefGoogle Scholar

  • [73] Wilson R.S., Yu L., Schneider J.A., Arnold S.E., Buchman A.S., Bennett D.A., Lewy bodies and olfactory dysfunction in old age, Chem. Senses, 2011, 36, 367–373 http://dx.doi.org/10.1093/chemse/bjq139CrossrefGoogle Scholar

  • [74] Wilson R.S., Arnold S.E., Schneider J.A., Tang Y., Bennett D.A., The relationship between cerebral Alzheimer’s disease pathology and odour identification in old age, J. Neurol. Neurosurg. Psychiatry, 2007, 78, 30–35 http://dx.doi.org/10.1136/jnnp.2006.099721CrossrefGoogle Scholar

  • [75] Wilson R.S., Arnold S.E., Schneider J.A., Boyle P.A., Buchman A.S., Bennett D.A., Olfactory impairment in presymptomatic Alzheimer’s disease, Ann. N.Y. Acad. Sci., 2009, 1170, 730–735 http://dx.doi.org/10.1111/j.1749-6632.2009.04013.xCrossrefGoogle Scholar

  • [76] Chen Y., Getchell T.V., Larry Sparks D., Getchell M.L., Patterns of adrenergic and peptidergic innervation in human olfactory mucosa: age-related trends, J. Comp. Neurol. 1993, 334, 104–116 http://dx.doi.org/10.1002/cne.903340109CrossrefGoogle Scholar

  • [77] Paik S.I., Lehman M.N., Seiden A.M., Duncan H.J., Smith D.V., Human olfactory biopsy. The influence of age and receptor distribution, Arch. Otolaryngol. Head Neck Surg., 1992, 118, 731–738 http://dx.doi.org/10.1001/archotol.1992.01880070061012CrossrefGoogle Scholar

  • [78] Schubert C.R., Carmichael L.L., Murphy C., Klein B.E.K., Klein R, Cruickshanks K.J., Olfaction and the 5-year incidence of cognitive impairment in an epidemiological study of older adults, J. Am. Geriatr. Soc., 2008, 56, 1517–1521 http://dx.doi.org/10.1111/j.1532-5415.2008.01826.xCrossrefGoogle Scholar

  • [79] Sohrabi H.R., Bates K.A., Weinborn M.G., Johnston A.N.B., Bahramian A., Taddei K., et al., Olfactory discrimination predicts cognitive decline among community-dwelling older adults, Transl. Psychiatry, 2012, 2, e118 http://dx.doi.org/10.1038/tp.2012.43CrossrefGoogle Scholar

  • [80] Wilson R.S., Schneider J.A., Arnold S.E., Tang Y., Boyle P.A., Bennett D.A., Olfactory identification and incidence of mild cognitive impairment in older age, Arch. Gen. Psychiatry, 2007, 67, 802–808 http://dx.doi.org/10.1001/archpsyc.64.7.802CrossrefGoogle Scholar

  • [81] Sohrabi H.R., Bates K.A., Rodrigues M., Taddei K., Laws S.M., Lautenschlager N.T., et al., Olfactory dysfunction is associated with subjective memory complaints in community-dwelling elderly individuals, J. Alzheimer Dis., 2009, 17, 135–142 Google Scholar

  • [82] Royall D.R., Chiodo L.K., Polk M.J., Jaramillo C.J., Severe dysosmia is specifically associated with Alzheimer-like memory deficits in nondemented elderly retirees, Neuroepidemiology, 2002, 21, 68–73 http://dx.doi.org/10.1159/000048619CrossrefGoogle Scholar

  • [83] Djordjevic J., Jones-Gotman M., De Sousa K., Chertkow H., Olfaction in patients with mild cognitive impairment and Alzheimer’s disease, Neurobiol. Aging, 2008, 29, 693–706 http://dx.doi.org/10.1016/j.neurobiolaging.2006.11.014CrossrefGoogle Scholar

  • [84] Westervelt H.J., Bruce J.M., Coon W.G., Tremont G., Odor identification in mild cognitive impairment subtypes, J. Clin. Exp. Neuropsychol., 2008, 30, 151–156 http://dx.doi.org/10.1080/13803390701287408CrossrefGoogle Scholar

  • [85] Devanand D.P., Liu X., Tabert M.H., Pradhaban G, Cuasay K., Bell K., et al., Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease, Biol. Psychiatry, 2008, 64, 871–879 http://dx.doi.org/10.1016/j.biopsych.2008.06.020CrossrefGoogle Scholar

  • [86] Lojkowska W., Eawicka B., Gugala M., Sienkiewicz-Jarosz H., Bochynska A., Scinska A., et al., Follow-up study of olfactory deficits, cognitive functions, and volume loss of medial temporal lobe structures in patients with mild cognitive impairment, Curr. Alzheimer Res., 2011, 8, 689–698 http://dx.doi.org/10.2174/156720511796717212CrossrefGoogle Scholar

  • [87] Devanand D.P., Michaels-Marston K.S., Liu X., Pelton G.H., Padilla M., Marder K., et al., Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up, Am. J. Psychiatry, 2000, 157, 1399–1405 http://dx.doi.org/10.1176/appi.ajp.157.9.1399CrossrefGoogle Scholar

  • [88] Bahar-Fuchs A., Moss S., Rowe C., Savage G., Awareness of olfactory deficits in healthy aging, amnestic mild cognitive impairment and Alzheimer’s disease, Int. Psychogeriatr., 2011, 23, 1097–1106 http://dx.doi.org/10.1017/S1041610210002371CrossrefGoogle Scholar

  • [89] Bahar-Fuchs A., Chételat G, Villemagne V.L., Moss S., Pike K., Masters C.L., et al., Olfactory deficits and amyloid-β burden in Alzheimer’s disease, mild cognitive impairment, and healthy aging: a PiB PET study, J. Alzheimer Dis., 2010, 22, 1081–1087 Google Scholar

  • [90] Schofield P.W., Ebrahimi H., Jones A.L., Bateman G.A., Murray S.R., An olfactory ‘stress test’ may detect preclinical Alzheimer’s disease, BMC Neurol., 2012, 12, 24 http://dx.doi.org/10.1186/1471-2377-12-24CrossrefGoogle Scholar

  • [91] Wang J, Eslinger P.J., Doty R.L., Zimmerman E.K., Grunfeld R., Sun X., et al., Olfactory deficit detected by fMRI in early Alzheimer’s disease, Brain Res., 2010, 1357, 184–194 http://dx.doi.org/10.1016/j.brainres.2010.08.018CrossrefGoogle Scholar

  • [92] Li W., Howard J.D., Gottfried J.A., Disruption of odour quality coding in piriform cortex mediates olfactory deficits in Alzheimer’s disease, Brain, 2010, 133, 2714–2726 http://dx.doi.org/10.1093/brain/awq209CrossrefGoogle Scholar

  • [93] Kareken D.A., Doty R.L., Moberg P.J., Mosnik D, Chen SH, Farlow M.R., et al., Olfactory-evoked regional cerebral blood flow in Alzheimer’s disease, Neuropsychology, 2001, 15, 18–29 http://dx.doi.org/10.1037/0894-4105.15.1.18CrossrefGoogle Scholar

  • [94] Wang Q-S., Tian L., Huang Y-L., Qin S, He L-Q., Zhou J-N., Olfactory identification and apolipoprotein ɛ4 allele in mild cognitive impairment, Brain Res., 2002, 951, 77–81 http://dx.doi.org/10.1016/S0006-8993(02)03137-2CrossrefGoogle Scholar

  • [95] Olofsson J.K., Nordin S., Wiens S, Hedner M., Nilsson L-G., Larsson M., Odor identification in carriers of ApoE-ɛ4 is independent of clinical dementia, Neurobiol. Aging, 2010, 31, 567–577 http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.019CrossrefGoogle Scholar

  • [96] Calhoun-Haney R., Murphy C., Apolipoprotein ɛ4 is associated with more rapid decline in odor identification than in odor threshold or Dementia Rating Scale scores, Brain Cogn., 2005, 58, 178–182 http://dx.doi.org/10.1016/j.bandc.2004.10.004CrossrefGoogle Scholar

  • [97] Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., et al., Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 280–292 http://dx.doi.org/10.1016/j.jalz.2011.03.003CrossrefGoogle Scholar

  • [98] Handley O.J., Morrison C.M., Miles C., Bayer A.J., ApoE gene and familial risk of Alzheimer’s disease as predictors of odour identification in older adults, Neurobiol. Aging, 2006, 27, 1425–1430 http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.001CrossrefGoogle Scholar

  • [99] Schiffmann S.S., Graham B.G., Sattely-Miller E.A., Zervakis J., Welsh-Bohmer K., Taste, smell and neuropsychological performance of individuals at familial risk for Alzheimer’s disease, Neurobiol. Aging, 2002, 23, 397–404 CrossrefGoogle Scholar

  • [100] Nee L.E., Lippa C.F., Inherited Alzheimer’s disease PS-1 olfactory function: a 10-year follow-up study, Am. J. Alzheimers Dis. Other Demen., 2001, 16, 83–84 http://dx.doi.org/10.1177/153331750101600210Google Scholar

  • [101] Larsson M., Semb H., Winblad B., Amberla K., Wahlund L.O., Bäckman L., Odor identification in normal aging and early Alzheimer’s disease: effects of retrieval support, Neuropsychology, 1999, 13, 47–53 http://dx.doi.org/10.1037/0894-4105.13.1.47CrossrefGoogle Scholar

  • [102] Suzuki Y., Yamamoto S., Umegaki H., Onishi J., Mogi N., Fujishiro H. et al., Smell identification test as an indicator for cognitive impairment in Alzheimer’s disease, Int. J. Geriatr. Psychiatry, 2004, 19, 727–733 http://dx.doi.org/10.1002/gps.1161CrossrefGoogle Scholar

  • [103] Tkalčić M., Spasić N., Ivanković M., Pokrajac-Bulian A., Bosanac D., Odor identification and cognitive abilities in Alzheimer’s disease, Transl. Neurosci., 2011, 2, 233–240 http://dx.doi.org/10.2478/s13380-011-0026-1CrossrefGoogle Scholar

  • [104] McCaffrey R.J., Duff K., Solomon G.S., Olfactory dysfunction discriminates probable Alzheimer’s dementia from major depression: a cross-validation and extension, J. Neuropsychiatry Clin. Neurosci., 2000, 12, 29–33 CrossrefGoogle Scholar

  • [105] Luzzi S., Snowden J.S., Neary D., Coccia M., Provinciali L., Lambon Ralph M.A., Distinct patterns of olfactory impairment in Alzheimer’s disease, semantic dementia, frontotemporal dementia, and corticobasal degeneration, Neuropsychologia, 2007, 45, 1823–1831 http://dx.doi.org/10.1016/j.neuropsychologia.2006.12.008CrossrefGoogle Scholar

  • [106] Hawkes C.H., Del Tredici K., Braak H., Parkinson’s disease: the dual hit theory revisited, Ann. NY Acad. Sci., 2009, 1170, 615–622 http://dx.doi.org/10.1111/j.1749-6632.2009.04365.xCrossrefGoogle Scholar

  • [107] Ferrera-Moyano H., Barragan E., The olfactory system and Alzheimer’s disease, Int. J. Neurosci., 1989, 49, 157–197 http://dx.doi.org/10.3109/00207458909084824CrossrefGoogle Scholar

  • [108] Doty R.L., The olfactory vector hypothesis of neurodegenerative disease: is it viable?, Ann. Neurol., 2008, 63, 7–15 http://dx.doi.org/10.1002/ana.21327CrossrefGoogle Scholar

  • [109] Tonelli L.H., Postolache T.T., Airborne inflammatory factors: “from the nose to the brain”, Front. Biosci. (Schol. Ed.), 2010, 2, 135–152 http://dx.doi.org/10.2741/s52CrossrefGoogle Scholar

  • [110] Honjo K., van Reekum R., Verhoeff N.P., Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease?, Alzheimers Dement., 2009, 5, 348–360 http://dx.doi.org/10.1016/j.jalz.2008.12.001CrossrefGoogle Scholar

  • [111] Špeljko T, Jutric D, Šimić G., HSV1 in Alzheimer’s disease: myth or reality?, Transl. Neurosci., 2011, 2, 61–68 http://dx.doi.org/10.2478/s13380-011-0009-2CrossrefGoogle Scholar

  • [112] Esiri M.M., Herpes simplex encephalitis. An immunohistological study of the distribution of viral antigen within the brain, J. Neurol. Sci., 1982, 54, 209–226 http://dx.doi.org/10.1016/0022-510X(82)90183-6CrossrefGoogle Scholar

  • [113] Landis B.N., Vodicka J., Hummel T., Olfactory dysfunction following herpetic meningoencephalitis, J. Neurol., 2010, 257, 439–443 http://dx.doi.org/10.1007/s00415-009-5344-7CrossrefGoogle Scholar

  • [114] Mann D.M., Tinkler A.M., Yates P.O., Neurological disease and herpes simplex virus. An immunohistochemical study, Acta Neuropathol., 1983, 60, 24–28 http://dx.doi.org/10.1007/BF00685344CrossrefGoogle Scholar

  • [115] Twomey J.A., Barker C.M., Robinson G., Howell D.A., Olfactory mucosa in herpes simplex encephalitis, J. Neurol. Neurosurg. Psychiatry, 1979, 42, 983–987 http://dx.doi.org/10.1136/jnnp.42.11.983CrossrefGoogle Scholar

  • [116] Dinn J.J., Transolfactory spread of virus in herpes simplex encephalitis, Br. Med. J., 1980, 281, 1392 http://dx.doi.org/10.1136/bmj.281.6252.1392CrossrefGoogle Scholar

  • [117] Balin B.J., Scott Little C., Hammond C.J., Appelt D.M., Whittum-Hudson J.A., Gérard H.C., et al., Chlamydophila pneumoniae and the etiology of late-onset Alzheimer’s disease, J. Alzheimers Dis., 2008, 13, 371–380 Google Scholar

  • [118] Balin B.J., Gerard H.C., Arking E.J., Appelt D.M., Branigan P.J., Abrams J.T., et al., Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain, Med. Microbiol. Immunol., 1998, 187, 23–42 http://dx.doi.org/10.1007/s004300050071CrossrefGoogle Scholar

  • [119] Roberts E., Alzheimer’s disease may begin in the nose and may be caused by aluminosilicates, Neurobiol. Aging, 1986, 7, 561–567 http://dx.doi.org/10.1016/0197-4580(86)90119-3CrossrefGoogle Scholar

  • [120] Samudralwar D.L., Diprete C.C., Ni B-F., Ehmann W.D., Markesbery W.R., Elemental imbalances in the olfactory pathway in Alzheimer’s disease, J. Neurol. Sci., 1995, 130, 139–145 http://dx.doi.org/10.1016/0022-510X(95)00018-WCrossrefGoogle Scholar

  • [121] Arriagada P.V., Louis D.N., Hedley-Whyte E.T., Hyman B.T., Neurofibrillary tangles and olfactory dysgenesis, Lancet, 1991, 337, 559 http://dx.doi.org/10.1016/0140-6736(91)91351-TCrossrefGoogle Scholar

  • [122] Pearson R.C., Esiri M.M., Hiorns R.W., Wilcock G.K., Powell T.P.S., Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 1985, 82, 4531–4534 http://dx.doi.org/10.1073/pnas.82.13.4531CrossrefGoogle Scholar

  • [123] Pearson R.C., Cortical connections and the pathology of Alzheimer’s disease, Neurodegeneration, 1996, 5, 429–434 http://dx.doi.org/10.1006/neur.1996.0058CrossrefGoogle Scholar

  • [124] Murray M.E., Graff-Radford N.R., Ross O.A., Petersen R.C., Duara R., Dickson D.W., Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study, Lancet Neurol., 2011, 10, 785–796 http://dx.doi.org/10.1016/S1474-4422(11)70156-9CrossrefGoogle Scholar

  • [125] Castellani R.J., Perry G., Pathogenesis and disease-modifying therapy in Alzheimer’s disease: the flat line of progress, Arch. Med. Res., 2012, 43, 694–698 http://dx.doi.org/10.1016/j.arcmed.2012.09.009CrossrefGoogle Scholar

  • [126] Lemere C.A., Maron R., Selkoe D.J., Weiner H.L., Nasal vaccination with beta-amyloid peptide for the treatment of Alzheimer’s disease, DNA Cell Biol., 2001, 20, 705–711 http://dx.doi.org/10.1089/10445490152717569CrossrefGoogle Scholar

  • [127] Sipos E., Kurunczi A., Fehér A., Penke Z., Fülöp L, Kasza A., et al., Intranasal delivery of human beta-amyloid peptide in rats: effective brain targeting, Cell. Mol. Neurobiol., 2010, 30, 405–413 http://dx.doi.org/10.1007/s10571-009-9463-6CrossrefGoogle Scholar

  • [128] Pepeu G., Giovannini M.G., Cholinesterase inhibitors and beyond, Curr. Alzheimer Res., 2009, 6, 86–96 http://dx.doi.org/10.2174/156720509787602861CrossrefGoogle Scholar

  • [129] Capsoni S., Giannotta S., Cattaneo A., Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in antinerve growth factor mice, Proc. Natl. Acad. Sci. USA, 2002, 99, 12432–12437 http://dx.doi.org/10.1073/pnas.192442999CrossrefGoogle Scholar

  • [130] Cuello A.C., Bruno M.A., Allard S., Leon W., Iulta M.F., Cholinergic involvement in Alzheimer’s disease. A link with NGF maturation and degradation, J. Mol. Neurosci., 2010, 40, 230–235 http://dx.doi.org/10.1007/s12031-009-9238-zCrossrefGoogle Scholar

  • [131] Tuszinsky M.H., Thal L., Pay M., Salmon D.P., U H.S., Bakay R., A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease, Nat. Med., 2005, 11, 551–555 http://dx.doi.org/10.1038/nm1239CrossrefGoogle Scholar

  • [132] Mandel R.J., CERE-110, an adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease, Curr. Opin. Mol. Ther., 2010, 12, 240–247 Google Scholar

  • [133] Eriksdotter-Jönhagen M., Linderoth B., Lind G., Aladellie L, Almkvist O, Andreasen N., et al., Encapsulated cell biodelivery of nerve growth factor to the basal forebrain in patients with Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 2012, 33, 18–28 http://dx.doi.org/10.1159/000336051CrossrefGoogle Scholar

  • [134] Chen X.Q., Fawcett J.R., Rahman Y.E., Ala T.A., Frey W.H., Delivery of nerve growth factor to the brain via the olfactory pathway, J. Alzheimers Dis., 1998, 1, 35–44 Google Scholar

  • [135] Capsoni S., Covaveuszach S., Ugolini G., Spirito F., Vignone D., Stefanini B., et al., Delivery of NGF to the brain: intranasal versus ocular administration in anti-NGF transgenic mice, J. Alzheimers Dis. 2009, 16, 371–388 Google Scholar

  • [136] Chiu S.L., Chen C.M., Cline H.T., Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo, Neuron, 2008, 58, 708–719 CrossrefGoogle Scholar

  • [137] McNay E.C., Ong C.T., McCrimmon R.J., Cresswell J., Bogan J.S., Sherwin R.S., Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance, Neurobiol. Learn. Mem., 2010, 93, 546–553 http://dx.doi.org/10.1016/j.nlm.2010.02.002CrossrefGoogle Scholar

  • [138] Bosco D., Fava A., Plastino M., Montalcini T., Pujia A., Possible implications of insulin-resistance and glucose metabolism in Alzheimer’s disease pathogenesis, J. Cell. Mol. Med., 2011, 15, 1807–1821 http://dx.doi.org/10.1111/j.1582-4934.2011.01318.xCrossrefGoogle Scholar

  • [139] Steen E., Terry B.M., Rivera E.J., Cannon J.L., Neely T.R., Tavares R., et al., Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease — is this type 3 diabetes?, J. Alzheimers Dis., 2005, 7, 63–80 Google Scholar

  • [140] Shemesh E., Rudich A., Harman-Boehm I, Cukiernab-Yaffe T., Effect of intranasal insulin on cognitive function: a systematic review, J. Clin. Endocrinol. Metab., 2012, 97, 366–376 http://dx.doi.org/10.1210/jc.2011-1802CrossrefGoogle Scholar

  • [141] Ott V., Benedict C., Schultes B., Born J., Hallschmid M., Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism, Diabetes Obes. Metab., 2012, 14, 214–221 http://dx.doi.org/10.1111/j.1463-1326.2011.01490.xCrossrefGoogle Scholar

  • [142] Reger M.A., Watson G.S., Green P.S., Baker L.D., Cholerton B., Fishel M.A., et al., Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults, J. Alzheimers Dis., 2008, 13, 323–331 Google Scholar

  • [143] Reger M.A., Watson G.S., Green P.S., Wilkinson C.W., Baker L.D., Cholerton B., et al., Intranasal insulin improves cognition and modulates beta-amyloid in early Alzheimer’s disease, Neurology, 2008, 70, 440–448 http://dx.doi.org/10.1212/01.WNL.0000265401.62434.36CrossrefGoogle Scholar

  • [144] Craft S., Baker L.D., Montine T.J., Minoshima S., Watson G.S., Claxton A., et al., Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial, Arch. Neurol., 2012, 69, 29–38 http://dx.doi.org/10.1001/archneurol.2011.233CrossrefGoogle Scholar

  • [145] Maestro B., Davila N., Carranza M.C., Calle C., Identification of a vitamin D response element in the human insulin receptor gene promoter, J. Steroid Biochem. Mol. Biol., 2003, 84, 223–230 http://dx.doi.org/10.1016/S0960-0760(03)00032-3CrossrefGoogle Scholar

  • [146] von Hurst P.R., Stonehouse W., Coad J., Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient — a randomised, placebo-controlled trial, Br. J. Nutr., 2010, 103, 549–555 http://dx.doi.org/10.1017/S0007114509992017CrossrefGoogle Scholar

  • [147] Stein M.S., Scherer S.C., Ladd K.S., Harrison L.C., A randomized controlled trial of high-dose vitamin D2 followed by intranasal insulin in Alzheimer’s disease, J. Alzheimers Dis., 2011, 26, 477–484 http://dx.doi.org/10.1177/1533317511424278CrossrefGoogle Scholar

  • [148] Jogani V.V., Shah P.J., Mishra P., Mishra A.K., Misra A.R., Nose-to-brain delivery of tacrine, J. Pharm. Pharmacol., 2007, 59, 1199–1205 http://dx.doi.org/10.1211/jpp.59.9.0003CrossrefGoogle Scholar

  • [149] Jogani V.V., Shah P.J., Mishra A.K., Misra A.R., Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting, Alzheimer Dis. Assoc. Disord., 2008, 22, 116–124 http://dx.doi.org/10.1097/WAD.0b013e318157205bCrossrefGoogle Scholar

  • [150] Durand M., Coronas V., Jourdan F., Quirion R., Developmental and aging aspects of the cholinergic innervation of the olfactory bulb, Int. J. Dev. Neurosci., 1998, 16, 777–785 http://dx.doi.org/10.1016/S0736-5748(98)00087-2CrossrefGoogle Scholar

  • [151] Kása P., Rakonczay Z., Gulya K., The cholinergic system in Alzheimer’s disease, Prog. Neurobiol., 1997, 52, 511–535 http://dx.doi.org/10.1016/S0301-0082(97)00028-2CrossrefGoogle Scholar

  • [152] Velayudhan L., Lovestone S., Smell identification test as a treatment response marker in patients with Alzheimer disease receiving donepezil, J. Clin. Psychopharmacol., 2009, 29, 387–390 http://dx.doi.org/10.1097/JCP.0b013e3181aba5a5CrossrefGoogle Scholar

  • [153] Burns A., Perry E., Holmes C., Francis P., Morris J., Howes M.J., et al., A double-blind placebo-controlled randomized trial of Melissa officinalis oil and donepezil for the treatment of agitation in Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 2011, 31, 158–164 http://dx.doi.org/10.1159/000324438CrossrefGoogle Scholar

  • [154] Papp M.I., Komoly S., Szirmai I.G., Kovács T., Similarities between CSF-brain extracellular transfer and neurofibrillary tangle invasion in Alzheimer’s disease, Neurobiol. Aging, 2006, 27, 402–412 http://dx.doi.org/10.1016/j.neurobiolaging.2005.03.023CrossrefGoogle Scholar

About the article

Published Online: 2013-03-07

Published in Print: 2013-03-01

Citation Information: Translational Neuroscience, Volume 4, Issue 1, Pages 34–45, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0108-3.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dimitra Savvoulidou, Efthymia Totikidou, Chariklia Varvesiotou, Magda Iakovidou, Ourania Sfakianaki, Georgia Papantoniou, Elvira Masoura, and Despina Moraitou
Brain Impairment, 2017, Volume 18, Number 2, Page 197
Katherine H. Franks, Meng Inn Chuah, Anna E. King, and James C. Vickers
Frontiers in Aging Neuroscience, 2015, Volume 7
Christoph Laske, Hamid R. Sohrabi, Shaun M. Frost, Karmele López-de-Ipiña, Peter Garrard, Massimo Buscema, Justin Dauwels, Surjo R. Soekadar, Stephan Mueller, Christoph Linnemann, Stephanie A. Bridenbaugh, Yogesan Kanagasingam, Ralph N. Martins, and Sid E. O'Bryant
Alzheimer's & Dementia, 2015, Volume 11, Number 5, Page 561
Peter W. Schofield, Sally Finnie, and Yun Ming Yong
Current Neurology and Neuroscience Reports, 2014, Volume 14, Number 9
Johannes Attems, Lauren Walker, and Kurt A. Jellinger
Acta Neuropathologica, 2014, Volume 127, Number 4, Page 459

Comments (0)

Please log in or register to comment.
Log in