Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year

IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
See all formats and pricing
More options …

Reassessment of teratogenic risk from antenatal ultrasound

Emily Williams
  • Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manuel Casanova
  • Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-07 | DOI: https://doi.org/10.2478/s13380-013-0112-7


Science has shown that risk of cavitation and hyperthermia following prenatal ultrasound exposure is relatively negligible provided intensity, frequency, duration of exposure, and total numbers of exposures are safely limited. However, noncavitational mechanisms have been poorly studied and occur within what are currently considered “safe” levels of exposure. To date, the teratogenic capacity of noncavitational effectors are largely unknown, although studies have shown that different forms of ultrasound-induced hydraulic forces and pressures can alter membrane fluidity, proliferation, and expression of inflammatory and repair markers. Loose regulations, poor end user training, and unreliable ultrasound equipment may also increase the likelihood of cavitation and hyperthermia during prenatal exposure with prolonged durations and increased intensities. The literature suggests a need for tighter regulations on the use of ultrasound and further studies into its teratogenicity.

Keywords: Cavitation; Microstreaming; Sonoporation; Teratogens; Ultrasonography; Prenatal

  • [1] Connolly C., Pond J., The possibility of harmful effects in using ultrasound for medical diagnosis, Biomed. Eng., 1967, 2, 112–115 Google Scholar

  • [2] Woo J., A short history of the development of ultrasound in obstetrics and gynecology. History of ultrasound in obstetrics and gynecology, Part 1, 2008, retrieved on 10/12/2009 from http://www.ob-ultrasound.net/history1.html Google Scholar

  • [3] Dewhurst C.J., The safety of ultrasound, Proc. R. Soc. Med., 1971, 64, 996–997 Google Scholar

  • [4] Dognon A., Simonot Y., 1951. Cavitation et hémolyse par ultrasons de fréquences différentes, C. R. Hebd. Séances Acad. Sci., 1951, 232, 2411–2413 Google Scholar

  • [5] Křížek V., Kolominsky J., Tepelné účinky ultrazvuku ve tkánäch, Čas. Lék. Čes., 1951, 90, 482–486 Google Scholar

  • [6] Johns L.D., Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis, J. Athl. Train., 2002, 37, 293–299 Google Scholar

  • [7] Newnham J.P., Evans S.F., Michael C.A., Stanley F.J., Landau L.I., Effects of frequent ultrasound during pregnancy: a randomised controlled trial, Lancet, 1993, 342, 887–891 http://dx.doi.org/10.1016/0140-6736(93)91944-HCrossrefGoogle Scholar

  • [8] Tarantal A.F., Hendrickx A.G., Evaluation of the bioeffects of prenatal ultrasound exposure in the cynomolgus macaque (Macaca fascicularis): I. neonatal/infant observations, Teratology, 1989, 39, 137–147 http://dx.doi.org/10.1002/tera.1420390206CrossrefGoogle Scholar

  • [9] You J.J., Alter D.A., Stukel T.A., McDonald S.D., Laupacis A., Liu Y., et al., Proliferation of prenatal ultrasonography, Can. Med. Assoc. J., 2010, 182, 143–151 http://dx.doi.org/10.1503/cmaj.090979CrossrefWeb of ScienceGoogle Scholar

  • [10] Holland C.K., Apfel R.E., Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment, J. Acoust. Soc. Am., 1990, 88, 2059–2069 http://dx.doi.org/10.1121/1.400102CrossrefGoogle Scholar

  • [11] Frizzell L.A., Biological effects of acoustic cavitation, In: Suslick K.S. (Ed.), Ultrasound: its chemical, physical and biological effects, VCH, New York, 1988, 287–303 Google Scholar

  • [12] Kremkau F.W., Bioeffects and safety, In: Diagnostic ultrasound: principles, instrumentation and exercises, 2nd ed., Grune and Straton, New York, 1984, 166–277 Google Scholar

  • [13] Nyborg W.L., Carson P.L., Miller D.L., Miller M.W., Ziskin M.C., Carstensen E.L., et al., Biological effects of ultrasound: mechanisms and clinical Implications, National Council on Radiation Protection and Measurement, Bethesda, 1983 Google Scholar

  • [14] National Institutes of Health Consensus Committee, Diagnostic ultrasound imaging in pregnancy, 1984, NIH Pub. No. 84-667 Google Scholar

  • [15] Ziskin M.S., Petitti D.B., Epidemiology of human exposure to ultrasound: a critical review, Ultrasound Med. Biol., 1988, 14, 91–96 http://dx.doi.org/10.1016/0301-5629(88)90174-3CrossrefGoogle Scholar

  • [16] Grether J.K., Li S.X., Yoshida C.K., Croen L.A., Antenatal ultrasound and risk of autism spectrum disorders, J. Autism Dev. Disord., 2010, 40, 238–245 http://dx.doi.org/10.1007/s10803-009-0859-4CrossrefGoogle Scholar

  • [17] Tezel A., Sens A., Mitragotri S., Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy, J. Pharm. Sci., 2002, 91, 444–453 http://dx.doi.org/10.1002/jps.10024CrossrefGoogle Scholar

  • [18] Counce S.J., Selman G.G., The effects of ultrasonic treatment on embryonic development of Drosophila melanogaster, J. Embryol. Exp. Morphol., 1955, 3, 121–141 Google Scholar

  • [19] Suslick K.S., The chemical effects of ultrasound., Sci. Am., 1989, 260, 80–86 http://dx.doi.org/10.1038/scientificamerican0289-80CrossrefGoogle Scholar

  • [20] Basile A., Biziato D., Sherbet G.V., Comi P., Cajone F., Hyperthermia inhibits cell proliferation and induces apoptosis: relative signaling status of P53, S100A4, and Notch in heat sensitive and resistant cell lines, J. Cell. Biochem., 2008, 103, 212–220 http://dx.doi.org/10.1002/jcb.21401CrossrefGoogle Scholar

  • [21] Kampinga H.H., Thermotolerance in mammalian cells: protein denaturation and a aggregation, and stress proteins, J. Cell Sci., 1993, 104, 11–17 Google Scholar

  • [22] Yatvin M.B., The influence of membrane lipid composition and procaine on hyperthermic death of cells, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1977, 32, 513–521 http://dx.doi.org/10.1080/09553007714551301CrossrefGoogle Scholar

  • [23] Riesz P., Kondo T., Free radical formation induced by ultrasound and its biological implications, Free Radic. Biol. Med., 1992, 13, 247–270 http://dx.doi.org/10.1016/0891-5849(92)90021-8CrossrefGoogle Scholar

  • [24] Davies K.J., Protein damage and degradation by oxygen radicals, I. General aspects, J. Biol. Chem., 1987, 262, 9895–9901 Google Scholar

  • [25] Quinlan G.J., Gutteridge J.M., Hydroxyl radical generation by the tetracycline antibiotics with free radical damage to DNA, lipids and carbohydrate in the presence of iron and copper salts, Free Radic. Biol. Med., 1988, 5, 341–348 http://dx.doi.org/10.1016/0891-5849(88)90106-2CrossrefGoogle Scholar

  • [26] Stadtman E.R., Levine R.L., Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 2003, 25, 207–218 http://dx.doi.org/10.1007/s00726-003-0011-2CrossrefGoogle Scholar

  • [27] Macintosh I.J., Davey D.A., Relationship between intensity of ultrasound and induction of chromosome aberrations, Br. J. Radiol., 1972, 45, 320–327 http://dx.doi.org/10.1259/0007-1285-45-533-320CrossrefGoogle Scholar

  • [28] Newcomer E.H., Wallace R.H., Chromosomal and nuclear aberrations induced by ultrasonic vibrations, Am. J. Bot., 1949, 36, 230–236 http://dx.doi.org/10.2307/2437793CrossrefGoogle Scholar

  • [29] Krasovitski B., Kimmel E., Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51, 973–979 http://dx.doi.org/10.1109/TUFFC.2004.1324401CrossrefGoogle Scholar

  • [30] Koshiyama K., Yano T., Kodama T., Self-organization of a stable pore structure in a phospholipid bilayer, Phys. Rev. Lett., 2010, 105, 018105 http://dx.doi.org/10.1103/PhysRevLett.105.018105CrossrefGoogle Scholar

  • [31] Deng C.X., Sieling F., Pan H., Cui J., Ultrasound-induced cell membrane porosity, Ultrasound Med. Biol., 2004, 30, 519–526 http://dx.doi.org/10.1016/j.ultrasmedbio.2004.01.005CrossrefGoogle Scholar

  • [32] Carafoli E., Calcium signaling: a tale for all seasons, Proc. Natl. Acad. Sci. USA, 2002, 99, 1115–1122 http://dx.doi.org/10.1073/pnas.032427999CrossrefGoogle Scholar

  • [33] Zhou Y., Shi J., Cui J., Deng C.X., Effects of extracellular calcium on cell membrane resealing in sonoporation, J. Control. Release, 2008, 126, 34–43 http://dx.doi.org/10.1016/j.jconrel.2007.11.007CrossrefWeb of ScienceGoogle Scholar

  • [34] Reddy A., Caler E.V., Andrews N.W., Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell, 2001, 106, 157–169 http://dx.doi.org/10.1016/S0092-8674(01)00421-4Google Scholar

  • [35] Yang F., Gu N., Chen D., Xi X., Zhang D., Li Y., et al., Experimental study on cell self-sealing during sonoporation, J. Control. Release, 2008, 131, 205–210 http://dx.doi.org/10.1016/j.jconrel.2008.07.038Web of ScienceCrossrefGoogle Scholar

  • [36] Al-Karmi A.M., Dinno M.A., Stolz D.A., Crum L.A., Matthews J.C., Calcium and the effects of ultrasound on frog skin, Ultrasound Med. Biol., 1994, 20, 73–81 http://dx.doi.org/10.1016/0301-5629(94)90019-1CrossrefGoogle Scholar

  • [37] Mihran R.T., Barnes F.S., Wachtel H., Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse, Ultrasound Med. Biol., 1990, 16, 297–309 http://dx.doi.org/10.1016/0301-5629(90)90008-ZCrossrefGoogle Scholar

  • [38] Tufail Y., Yoshihiro A., Pati S., Li M.M., Tyler W.J., Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound, Nat. Protoc., 2011, 6, 1453–1470 http://dx.doi.org/10.1038/nprot.2011.371Web of ScienceCrossrefGoogle Scholar

  • [39] Pébay A., Peshavariya H., Wong R.C.B., Dusting G.J., Non-classical signalling mechanisms in stem cells, In: Atwood C.S. (Ed.), Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis, Intech, ijeka, 2011, 317–336 Google Scholar

  • [40] American Institute of Ultrasound in Medicine, AIUM practice guideline for the performance of obstetric ultrasound examinations, J. Ultrasound Med., 2010, 29, 157–166 Google Scholar

  • [41] Sheiner E., Shoham-Vardi I., Abramowicz J.S., What do clinical end users know regarding safety of ultrasound during pregnancy?, J. Ultrasound Med., 2007, 26, 319–325 Google Scholar

  • [42] Washington State Health Care Authority, Ultrasonography (ultrasound) in pregnancy: health technology assessment, 2010, taken on 08/28/2012 from http://www.hta.hca.wa.gov/documents/final_report_ultrasound.pdf Google Scholar

  • [43] Alberta Clinical Practice Guidelines Working Group for Prenatal Ultrasound, Guideline for the use of prenatal ultrasound: First trimester, Alberta Medical Association, Edmonton, 1998 Google Scholar

  • [44] Mårtensson M., Olsson M., Brodin, L.-Å. Ultrasound transducer function: annual testing is not sufficient, Eur. J. Echocardiogr., 2010, 11, 801–805 http://dx.doi.org/10.1093/ejechocard/jeq072Web of ScienceCrossrefGoogle Scholar

  • [45] Mårtensson M., Olsson M., Segall B., Fraser A.G., Winter R., Brodin L.-Å. High incidence of defective ultrasound transducers in use in routine clinical practice, Eur. J. Echocardiogr., 2009, 10, 389–394 http://dx.doi.org/10.1093/ejechocard/jen295Web of ScienceCrossrefGoogle Scholar

  • [46] Rados C., FDA cautions against ultrasound’ keepsake’ images, FDA Consum., 2004, 38, 12–16 Google Scholar

  • [47] Williams E.L., Casanova M.F., Prenatal ultrasound: it’s not just a photograph, Autism Sci. Dig., 2011, 1, 58–60 Google Scholar

  • [48] Abbott J.G., Rationale and derivation of MI and TI — a review, Ultrasound Med. Biol., 1999, 25, 431–441 http://dx.doi.org/10.1016/S0301-5629(98)00172-0CrossrefGoogle Scholar

About the article

Published Online: 2013-03-07

Published in Print: 2013-03-01

Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0112-7.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Abbi M. McClintic, Bryan H. King, Sara J. Webb, and Pierre D. Mourad
Autism Research, 2014, Volume 7, Number 3, Page 295

Comments (0)

Please log in or register to comment.
Log in