Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2016: 0.922
5-year IMPACT FACTOR: 1.030

CiteScore 2016: 1.13

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Transposable elements occur more frequently in autism-risk genes: Implications for the role of genomic instability in autism

Emily Williams
  • Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manuel Casanova
  • Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew Switala
  • Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hong Li
  • Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mengsheng Qiu
  • Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-09 | DOI: https://doi.org/10.2478/s13380-013-0113-6

Abstract

An extremely large number of genes have been associated with autism. The functions of these genes span numerous domains and prove challenging in the search for commonalities underlying the conditions. In this study, we instead looked at characteristics of the genes themselves, specifically in the nature of their transposable element content. Utilizing available sequence databases, we compared occurrence of transposons in autismrisk genes to randomized controls and found that transposable content was significantly greater in our autism group. These results suggest a relationship between transposable element content and autism-risk genes and have implications for the stability of those genomic regions.

Keywords: Autism-risk genes; Autism spectrum disorders; Genomic instability; Transposons

  • [1] Kazazian H.H.Jr., Mobile DNA: Finding treasure in junk, FT Press Science, New Jersey, 2011 Google Scholar

  • [2] Tassabehji M., Strachan T., Anderson M., Campbell R.D., Collier S., Lako M., Identification of a novel family of human endogenous retroviruses and characterization of one family member, HERV-k(C4), located in the complement C4 gene cluster, Nucleic Acids Res., 1991, 22, 5211–5217 http://dx.doi.org/10.1093/nar/22.24.5211CrossrefGoogle Scholar

  • [3] Xu L.M., Li J.R., Huang Y., Zhao M., Tang X., Wei L., AutismKB: an evidence-based knowledgebase of autism genetics, Nucleic Acids Res., 2012, 40, D1016–D1022 http://dx.doi.org/10.1093/nar/gkr1145CrossrefWeb of ScienceGoogle Scholar

  • [4] Pinto D., Pagnamenta A.T., Keli L., Anney R., Merico D., Regan R., et al., Functional impact of global rare copy number variation in autism spectrum disorder, Nature, 2010, 466, 368–372 http://dx.doi.org/10.1038/nature09146CrossrefWeb of ScienceGoogle Scholar

  • [5] Shlien A., Tabori U., Marshall C.R., Pienkowska M., Feuk L., Novokmet A., et al., Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome, Proc. Natl. Acad. Sci. USA, 2008, 105, 11264–11269 http://dx.doi.org/10.1073/pnas.0802970105CrossrefGoogle Scholar

  • [6] Verkerk A.J., Pieretti M., Sutcliffe J.S., Fu Y.H., Kuhl D.P., Pizzuti A., et al., Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome, Cell, 1991, 65, 905–914 http://dx.doi.org/10.1016/0092-8674(91)90397-HCrossrefGoogle Scholar

  • [7] Liu Y., Hock J. M., Van Beneden R. J., Li X., Aberrant overexpression of FOXM1 transcription factor plays a critical role in lung carcinogenesis induced by low doses of arsenic, Mol. Carcinogen., 2012, Epub ahead of print, doi: 10.1002/mc.21989 Web of ScienceGoogle Scholar

  • [8] Schmidt J. M., Good R.T., Appleton B., Sherrard H., Raymant G.C., Bogwitz M.R., et al., Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus, PLoS Genet., 2010, 6, e1000998 http://dx.doi.org/10.1371/journal.pgen.1000998Web of ScienceCrossrefGoogle Scholar

  • [9] McGinnis W., Shermoen A.W., Beckendorf S.K., A transposable element inserted just 5’ to a Drosophila glue protein gene alters gene expression and chromatin structure, Cell, 1983, 34, 75–84 http://dx.doi.org/10.1016/0092-8674(83)90137-XCrossrefGoogle Scholar

  • [10] Hoffman-Liebermann B., Liebermann D., Troutt A., Kedes L.H., Cohen S.N., Human homologs of TU transposon sequences: polypurine/polypyrimidine sequence elements that can alter DNA conformation in vitro and in vivo, Mol. Cell. Biol., 1986, 6, 3622–3642 Google Scholar

  • [11] Hedges D.J., Deininger P.L., Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity, Mutat. Res., 2007, 616, 46–59 http://dx.doi.org/10.1016/j.mrfmmm.2006.11.021CrossrefWeb of ScienceGoogle Scholar

  • [12] Thomas-Chollier M., Sand O., Turatsinze J.V., Janky R., Defrance M., Vervisch E., et al., RSAT: regulatory sequence analysis tools, Nucleic Acids Res., 2008, 36, W119–W127 http://dx.doi.org/10.1093/nar/gkn304CrossrefGoogle Scholar

  • [13] Flicek P., Amode M.R., Barrell D., Beal K., Brent S., Carvalho-Silva D., et al., Ensembl 2012., Nucleic Acids Res., 2012, 40, D84–D90 http://dx.doi.org/10.1093/nar/gkr991CrossrefGoogle Scholar

  • [14] Levy A., Sela N., Ast G., TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates, Nucleic Acids Res., 2008, 36, D47-D52 Web of ScienceGoogle Scholar

  • [15] International Schizophrenia Consortium, Rare chromosomal deletions and duplications increase risk of schizophrenia, Nature, 2008, 455, 237–241 http://dx.doi.org/10.1038/nature07239CrossrefGoogle Scholar

  • [16] Shlien A., Malkin D., Copy number variations and cancer, Genome Med., 2009, 1, 62 http://dx.doi.org/10.1186/gm62Web of ScienceCrossrefGoogle Scholar

  • [17] Cross-Disorder Group of the Psychiatric Genomics Consortium, Smoller J.W., Craddock N., Kendler K., Lee P.H., Naele B.M., et al., Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis, Lancet, 2013, 381, 1372-1379 Google Scholar

  • [18] Girirajan S., Dennis M.Y., Baker C., Malig M., Coe B.P., Campbell C.D., et al., Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder, Am. J. Hum. Genet., 2013, 92, 221–237 http://dx.doi.org/10.1016/j.ajhg.2012.12.016Web of ScienceCrossrefGoogle Scholar

  • [19] Millan M. J., An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy, Neuropharmacology, 2012, 68, 2–82 http://dx.doi.org/10.1016/j.neuropharm.2012.11.015Web of ScienceCrossrefGoogle Scholar

  • [20] Shulha H.P., Cheung I., Whittle C., Wang J., Virgil D., Lin C.L., et al., Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons, Arch. Gen. Psychiat., 2012, 69, 314–324 http://dx.doi.org/10.1001/archgenpsychiatry.2011.151CrossrefGoogle Scholar

  • [21] Yuan J., Pu M., Zhang Z., Lou Z., Histone H3-K56 acetylation is important for genomic stability in mammals, Cell Cycle, 2009, 8, 1747–1753 http://dx.doi.org/10.4161/cc.8.11.8620Web of ScienceCrossrefGoogle Scholar

  • [22] Slotkin R. K., Martienssen R., Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet., 2007, 8, 272–285 http://dx.doi.org/10.1038/nrg2072Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2013-06-09

Published in Print: 2013-06-01


Citation Information: Translational Neuroscience, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0113-6.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael W. Nestor, Andre W. Phillips, Elena Artimovich, Jonathan E. Nestor, John P. Hussman, and Gene J. Blatt
Autism Research, 2016, Volume 9, Number 5, Page 513

Comments (0)

Please log in or register to comment.
Log in