Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Translational Neuroscience

Editor-in-Chief: David, Olivier

1 Issue per year


IMPACT FACTOR 2017: 0.833
5-year IMPACT FACTOR: 1.247

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.428
Source Normalized Impact per Paper (SNIP) 2017: 0.244

Open Access
Online
ISSN
2081-6936
See all formats and pricing
More options …

Untangling the role of tau in Alzheimer’s disease: A unifying hypothesis

Neha Bhatia
  • Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Garth Hall
  • Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-09 | DOI: https://doi.org/10.2478/s13380-013-0114-5

Abstract

Recent investigations into the etiology and pathogenesis of Alzheimer’s disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of Aβ and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.

Keywords: Tauopathy; Secretion; Alzheimer’s disease pathogenesis; Tau lesion spread; Neurodegeneration; Tauopathy models; Tauopathy hypothesis

  • [1] Alzheimer A., Über eine eigenartige Erkrankung der Hirnrinde, Allg. Z. Psychiatr., 1907, 64, 146–148 Google Scholar

  • [2] Lowenberg K., Waggoner R., Familial organic psychosis (Alzheimer’s type), Arch. Neurol., 1934, 31, 737–754 http://dx.doi.org/10.1001/archneurpsyc.1934.02250040061004CrossrefGoogle Scholar

  • [3] Blessed G., Tomlinson B.E., Roth M., The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects, Br. J. Psychiatry, 1968, 114, 797–811 http://dx.doi.org/10.1192/bjp.114.512.797CrossrefGoogle Scholar

  • [4] Olson M.I., Shaw C.M., Presenile dementia and Alzheimer’s disease in mongolism, Brain, 1969, 92, 147–156 http://dx.doi.org/10.1093/brain/92.1.147CrossrefGoogle Scholar

  • [5] Cook R., Ward B., Austin J., Studies in aging of the brain: IV. Familial Alzheimer’s disease: relationship to transmissible dementia, aneuploidy and microtubular defects, Neurology, 1979, 29, 1402–1412 CrossrefGoogle Scholar

  • [6] Buckton K.E., Whalley L.J., Lee M., Christie J.E., Chromosome changes in Alzheimer’s presenile dementia, J. Med. Genet., 1983, 20, 46–51 http://dx.doi.org/10.1136/jmg.20.1.46CrossrefGoogle Scholar

  • [7] Bird T.D., Sumi S.M., Nemens E.J., Nochlin D., Schellenberg G., Lampe T.H., et al., Phenotypic heterogeneity in familial Alzheimer’s disease: a study of 24 kindreds, Ann. Neurol., 1989, 25, 12–25 http://dx.doi.org/10.1002/ana.410250104CrossrefGoogle Scholar

  • [8] Gambetti P., Autilio-Gambetti L., Perry G., Shecket G., Crane R.C., Antibodies to neurofibrillary tangles of Alzheimer’s disease raised from human and animal neurofilament fractions, Lab. Invest., 1983, 49, 430–435 Google Scholar

  • [9] Hyman B.T., Van Hoesen G.W., Damasio A.R., Barnes C.L., Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation, Science, 1984, 225, 1168–1170 http://dx.doi.org/10.1126/science.6474172CrossrefGoogle Scholar

  • [10] Kidd M., Paired helical filaments in electron microscopy of Alzheimer’s disease, Nature, 1963, 197, 192–193 http://dx.doi.org/10.1038/197192b0CrossrefGoogle Scholar

  • [11] Whitehouse P.J., Price D.L., Struble R.G., Clark A.W., Coyle J.T., DeLong M.R., Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 1982, 215, 1237–1239 http://dx.doi.org/10.1126/science.7058341CrossrefGoogle Scholar

  • [12] Drachman D.A., Leavitt J., Human memory and the cholinergic system: a relationship to aging?, Arch. Neurol., 1974, 30, 113–121 http://dx.doi.org/10.1001/archneur.1974.00490320001001CrossrefGoogle Scholar

  • [13] Glenner G.G., Wong C.W., Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun., 1984, 122, 1131–1135 http://dx.doi.org/10.1016/0006-291X(84)91209-9CrossrefGoogle Scholar

  • [14] Grundke-Iqbal I., Iqbal K., Tung Y.C., Quinlan M., Wisniewski H.M., Binder L.I., Abnormal phosphorylation of the microtubuleassociated protein tau in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA, 1986, 83, 4913–4917 http://dx.doi.org/10.1073/pnas.83.13.4913CrossrefGoogle Scholar

  • [15] Kosik K.S., Joachim C.L., Selkoe D.J., Microtubule associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. USA 83, 1986, 4044–4048 http://dx.doi.org/10.1073/pnas.83.11.4044CrossrefGoogle Scholar

  • [16] Bancher C., Brunner C., Lassman H., Budka H., Jellinger K., Wiche G., et al., Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease, Brain Res., 1989, 477, 90–99 http://dx.doi.org/10.1016/0006-8993(89)91396-6CrossrefGoogle Scholar

  • [17] McKee A.C., Kowall N.W., Kosik K.S., Microtubular reorganization and dendritic growth response in Alzheimer’s disease, Ann. Neurol., 1989, 26, 652–659 http://dx.doi.org/10.1002/ana.410260511CrossrefGoogle Scholar

  • [18] Braak H., Braak E., Neuropathological staging of Alzheimer-related changes, Acta Neuropathol., 1991, 82, 239–259 http://dx.doi.org/10.1007/BF00308809CrossrefGoogle Scholar

  • [19] Yamaguchi H., Nakazato Y., Shoji M., Ihara Y., Hirai S., Ultrastructure of the neuropil threads in the Alzheimer brain: their dendritic origin and accumulation in the senile plaques, Acta Neuropathol., 1990, 80, 368–374 http://dx.doi.org/10.1007/BF00307689CrossrefGoogle Scholar

  • [20] St. George-Hyslop P.H., Tanzi R.E., Polinsky R.J., Haines J.L., Nee L., Watkins P.C., et al. The genetic defect causing familial Alzheimer’s disease maps on chromosome 21, Science, 1987, 235, 885–890 http://dx.doi.org/10.1126/science.2880399CrossrefGoogle Scholar

  • [21] Chartier-Harlin M.C., Crawford F., Houlden H., Warren A., Hughes D., Fidani L., et al., Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene, Nature, 1991, 353, 844–846 http://dx.doi.org/10.1038/353844a0Google Scholar

  • [22] Goate A., Chartier-Hardin M.C., Mullan M., Brown J., Crawford F., Fidani L., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s Disease, Nature, 1991, 349, 704–706 http://dx.doi.org/10.1038/349704a0CrossrefGoogle Scholar

  • [23] Murrel J. M., Farlow B., Ghetti B., Benson M.D., A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease, Science, 1991, 254, 97–99 http://dx.doi.org/10.1126/science.1925564CrossrefGoogle Scholar

  • [24] Selkoe D.J., The molecular pathology of Alzheimer’s disease, Neuron, 1991, 6, 487–498 http://dx.doi.org/10.1016/0896-6273(91)90052-2CrossrefGoogle Scholar

  • [25] Hardy J.A., Higgins G.A., Alzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, 256, 184–185 http://dx.doi.org/10.1126/science.1566067CrossrefGoogle Scholar

  • [26] Wallace W.C., Bragin V., Robakis N.K., Sambamurti K., VanderPutten D., Merril C.R., et al., Increased biosynthesis of Alzheimer amyloid precursor protein the in cerebral cortex of rats with lesions of the nucleus basalis of Meynert, Mol. Brain Res., 1991, 10, 173–178 http://dx.doi.org/10.1016/0169-328X(91)90108-ACrossrefGoogle Scholar

  • [27] Strittmatter W.J., Saunders A.M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G.S., et al., Apolipoprotein E: high-avidity binding to betaamyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease, Proc. Natl. Acad. Sci. USA, 1993, 90, 1977–1981 http://dx.doi.org/10.1073/pnas.90.5.1977CrossrefGoogle Scholar

  • [28] Wisniewski T., Frangione B., Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid, Neurosci. Lett., 1992, 135:235–238 http://dx.doi.org/10.1016/0304-3940(92)90444-CCrossrefGoogle Scholar

  • [29] Gentleman S.M., Nash M.J., Sweeting C.J., Graham D.I., Roberts G.W., β-Amyloid precursor protein (βAPP) as a marker for axonal injury after head injury, Neurosci. Lett., 1993, 160, 139–144 http://dx.doi.org/10.1016/0304-3940(93)90398-5CrossrefGoogle Scholar

  • [30] McKenzie J.E., Gentleman S.M., Roberts G.W., Graham D.I., Royston M.C., Increased numbers of βAPP-immunoreactive neurones in the entorhinal cortex after head injury, Neuroreport, 1994, 6, 161–164 http://dx.doi.org/10.1097/00001756-199412300-00041CrossrefGoogle Scholar

  • [31] Yankner B.A., Dawes L.R., Fisher S., Villa-Komaroff L., Oster-Granite M.L., Neve R.L., Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease, Science, 1989, 245, 417–420 http://dx.doi.org/10.1126/science.2474201CrossrefGoogle Scholar

  • [32] Busciglio J., Lorenzo A., Yeh J., Yankner B.A., Amyloid fibrils induce tau phosphorylation and loss of microtubule binding, Neuron, 1995, 14, 879–888 http://dx.doi.org/10.1016/0896-6273(95)90232-5CrossrefGoogle Scholar

  • [33] Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al., Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein, Nature, 1995, 373, 523–527 http://dx.doi.org/10.1038/373523a0CrossrefGoogle Scholar

  • [34] Wolfe M.S., Xia W., Ostaszewski B.L., Diehl T.S., Kimberly W.T., Selkoe D.J., Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity, Nature, 1999, 398, 513–517 http://dx.doi.org/10.1038/19077CrossrefGoogle Scholar

  • [35] Kowall N.W., Kosik K.S., Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease, Ann. Neurol., 1987, 22, 639–643 http://dx.doi.org/10.1002/ana.410220514CrossrefGoogle Scholar

  • [36] Weingarten M.D., Lockwood A.H., Hwo S.Y., Kirschner M.W., A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. USA, 1975, 72, 1858–1862 http://dx.doi.org/10.1073/pnas.72.5.1858CrossrefGoogle Scholar

  • [37] Cleveland D.W., Hwo S.Y., Kirschner M.W., Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, J. Mol. Biol., 1977, 116, 227–247 http://dx.doi.org/10.1016/0022-2836(77)90214-5CrossrefGoogle Scholar

  • [38] Greenberg S.G., Davies P., A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis, Proc. Natl. Acad. Sci. USA, 1990, 87, 5827–5831 http://dx.doi.org/10.1073/pnas.87.15.5827CrossrefGoogle Scholar

  • [39] Binder L.I., Frankfurter A., Rebhun L.I., The distribution of tau polypeptides in the mammalian central nervous system, J. Cell Biol., 1985, 101, 1371–1378 http://dx.doi.org/10.1083/jcb.101.4.1371CrossrefGoogle Scholar

  • [40] Lindwall G., Cole R.D., Phosphorylation affects the ability of tau protein to promote microtubule assembly, J. Biol. Chem., 1984, 259, 5301–5305 Google Scholar

  • [41] Lee G., Cowan N., Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain, Science, 1998, 239, 285–288 http://dx.doi.org/10.1126/science.3122323CrossrefGoogle Scholar

  • [42] Goedert M., Wischik C.M., Crowther R.A., Walker J.E., Klug A., Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau, Proc. Natl. Acad. Sci. USA, 85, 1998, 4051–4055 http://dx.doi.org/10.1073/pnas.85.11.4051CrossrefGoogle Scholar

  • [43] Ksiezak-Reding H., Yen S.H., Structural stability of paired helical filaments requires microtubule-binding domains of tau: a model for self-association, Neuron, 1991, 6, 717–728 http://dx.doi.org/10.1016/0896-6273(91)90169-ZCrossrefGoogle Scholar

  • [44] Novak M., Jakes R., Edwards P.C., Milstein C., Wischik C.M., Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51, Proc. Natl. Acad. Sci. USA, 1991, 88, 5837–5841 http://dx.doi.org/10.1073/pnas.88.13.5837CrossrefGoogle Scholar

  • [45] Crowther R.A., Olesen O.F., Jakes R., Goedert M., The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer’s disease, FEBS Lett., 1992, 309, 199–202 http://dx.doi.org/10.1016/0014-5793(92)81094-3CrossrefGoogle Scholar

  • [46] Arriagada P.A., Growdon J.H., Hedley-White E.T., Hyman B.T., Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s Disease, Neurology, 1992, 42, 631–639 http://dx.doi.org/10.1212/WNL.42.3.631CrossrefGoogle Scholar

  • [47] Armstrong R.A., Myers D., Smith C.U.M., The spatial patterns of plaques and tangles in Alzheimer’s disease do not support the ‘cascade hypothesis’, Dementia, 1993, 4, 16–20 Google Scholar

  • [48] Baum L., Seger R., Woodgett J.R., Kawabata S., Maruyama K., Koyama M., Silver J., Saitoh T., Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement, Mol. Brain Res., 1995, 34, 1–17 http://dx.doi.org/10.1016/0169-328X(95)00111-5CrossrefGoogle Scholar

  • [49] Levy-Lahad E., Wasco W., Poorkaj P., Romano D.M., Oshima J., Pettingell W.H., et al., Candidate gene for the chromosome 1 familial Alzheimer’s disease locus, Science, 1995, 269, 973–977 http://dx.doi.org/10.1126/science.7638622CrossrefGoogle Scholar

  • [50] Sherrington R., Rogaev E.I., Liang Y., et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease, Nature, 1995, 375, 754–760 http://dx.doi.org/10.1038/375754a0CrossrefGoogle Scholar

  • [51] Spillantini M.G., Murrell J.R., Goedert M., Farlow M.R., Klug A., Ghetti B., Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc. Natl. Acad. Sci. USA, 1998, 95, 7737–7741 http://dx.doi.org/10.1073/pnas.95.13.7737CrossrefGoogle Scholar

  • [52] Hall G.F., Yao J., Lee G., Tau overexpressed in identified lamprey neurons in situ is spatially segregated by phosphorylation state, forms hyperphosphorylated, dense aggregations and induces neurodegeneration, Proc. Natl. Acad. Sci. USA, 1997, 94, 4733–4738 http://dx.doi.org/10.1073/pnas.94.9.4733CrossrefGoogle Scholar

  • [53] Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M.K., Trojanowski J.Q., et al., Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform, Neuron, 1999, 24, 751–762 http://dx.doi.org/10.1016/S0896-6273(00)81127-7CrossrefGoogle Scholar

  • [54] Spittaels K., Van den Haute C., Van Dorpe J., Bruynseels K., Vandezande K., Laenen I., et al., Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein, Am. J. Pathol., 1999, 155, 2153–2165 http://dx.doi.org/10.1016/S0002-9440(10)65533-2CrossrefGoogle Scholar

  • [55] Götz J., Chen F., Barmettler R., Nitsch R.M., Tau filament formation in transgenic mice expressing P301L tau, J. Biol. Chem., 2001, 276, 529–534 http://dx.doi.org/10.1074/jbc.M006531200CrossrefGoogle Scholar

  • [56] Lewis J., McGowan E., Rockwood J., Melrose H., Nacharaju P., Van Slegtenhorst M., et al., Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein, Nat. Genet., 2000, 25, 402–405 http://dx.doi.org/10.1038/78078CrossrefGoogle Scholar

  • [57] Buee L., Delacourte A., Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease, Brain Pathol., 1999, 9, 681–693 http://dx.doi.org/10.1111/j.1750-3639.1999.tb00550.xCrossrefGoogle Scholar

  • [58] Hasegawa M., Smith M.J., Goedert M., Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly, FEBS Lett., 1998, 437, 207–210 http://dx.doi.org/10.1016/S0014-5793(98)01217-4CrossrefGoogle Scholar

  • [59] Arawaka S., Usami M., Sahara N., Schellenberg G.D., Lee G., Mori H., The tau mutation (val337met) disrupts cytoskeletal networks of microtubules, Neuroreport, 2000, 10, 993–997 http://dx.doi.org/10.1097/00001756-199904060-00018CrossrefGoogle Scholar

  • [60] Goedert M., Jakes R., Crowther R.A., Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments, FEBS Lett., 1999, 450, 306–311 http://dx.doi.org/10.1016/S0014-5793(99)00508-6CrossrefGoogle Scholar

  • [61] Nacharaju P., Lewis J., Easson C., Yen S., Hackett J., Hutton M., et al., Accelerated filament formation from tau protein with specific FTDP-17 missense mutations, FEBS Lett., 1999, 447, 195–199 http://dx.doi.org/10.1016/S0014-5793(99)00294-XCrossrefGoogle Scholar

  • [62] Goedert M., Satumtira S., Jakes R., Smith M.J., Kamibayashi C., White C.L.3rd, et al., Reduced binding of protein phosphatase 2A to tau protein with frontotemporal dementia and parkinsonism linked to chromosome 17 mutations, J. Neurochem., 2000, 75, 2155–2162 http://dx.doi.org/10.1046/j.1471-4159.2000.0752155.xCrossrefGoogle Scholar

  • [63] Alonso A.D., Grundke-Iqbal I., Barra H.S., Iqbal K., Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubuleassociated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau, Proc. Natl. Acad. Sci. USA, 94, 1997, 298–303 http://dx.doi.org/10.1073/pnas.94.1.298CrossrefGoogle Scholar

  • [64] Alonso A.C., Zaidi T., Novak M., Grundke-Iqbal I., Iqbal K., Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments and straight filaments, Proc. Natl. Acad. Sci. USA, 2001, 98, 6923–6928 http://dx.doi.org/10.1073/pnas.121119298CrossrefGoogle Scholar

  • [65] Lee V.M., Goedert M., Trojanowski J.Q., Neurodegenerative tauopathies, Annu. Rev. Neurosci., 2001, 24, 1121–1159 http://dx.doi.org/10.1146/annurev.neuro.24.1.1121CrossrefGoogle Scholar

  • [66] Binder L.I., Guillozet-Bongaarts A.L., Garcia-Sierra F., Berry R.W., Tau, tangles, and Alzheimer’s disease, Biochim. Biophys. Acta, 2005, 1739, 216–223 http://dx.doi.org/10.1016/j.bbadis.2004.08.014CrossrefGoogle Scholar

  • [67] Iqbal K.C., Alonso A., Chen S., Chohan M.O., El-Akkad E., Gong C.X., et al., Tau pathology in Alzheimer disease and other tauopathies, Biochim. Biophys. Acta, 2005, 1739, 198–210 http://dx.doi.org/10.1016/j.bbadis.2004.09.008CrossrefGoogle Scholar

  • [68] Avila J., Tau phosphorylation and aggregation in Alzheimer’s disease pathology, FEBS Lett., 2006, 580, 2922–2927 http://dx.doi.org/10.1016/j.febslet.2006.02.067CrossrefGoogle Scholar

  • [69] Stoothoff W., Johnson G.V., Tau phosphorylation: physiological and pathological consequences, Biochim. Biophys. Acta, 2005, 1739, 280–297 http://dx.doi.org/10.1016/j.bbadis.2004.06.017CrossrefGoogle Scholar

  • [70] Delacourte A., Sergeant N., Wattez A., Gauvreau D., Robitaille Y., Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their tau isoform distribution and phosphorylation, Ann. Neurol., 1998, 43, 193–204 http://dx.doi.org/10.1002/ana.410430209CrossrefGoogle Scholar

  • [71] Sergeant N., Wattez A., Delacourte A., Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusive “exon 10” isoforms, J. Neurochem., 1999, 72, 1243–1249 http://dx.doi.org/10.1046/j.1471-4159.1999.0721243.xGoogle Scholar

  • [72] Hutton M., Lewis J., Dickson D., Yen S.H., McGowan E., Analysis of tauopathies with transgenic mice, Trends Mol. Med., 2001, 7, 467–470 http://dx.doi.org/10.1016/S1471-4914(01)02123-2CrossrefGoogle Scholar

  • [73] Jakes R., Novak M., Davison M., Wischik C.M., Identification of 3- and 4-repeat tau isoforms within the PHF in Alzheimer’s disease, EMBO J., 1991, 10, 2725–2729 Google Scholar

  • [74] Crowther R.A., Olesen O.F., Smith M.J., Jakes R., Goedert M., Assembly of Alzheimer-like filaments from full-length tau protein, FEBS Lett., 1994, 337, 135–138 http://dx.doi.org/10.1016/0014-5793(94)80260-2CrossrefGoogle Scholar

  • [75] Brandt R., Leger J., Lee G., Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain, J. Cell Biol., 1995, 131, 1327–1340 http://dx.doi.org/10.1083/jcb.131.5.1327CrossrefGoogle Scholar

  • [76] Lee G., Newman S.T., Gard D.L., Band H., Panchamoorthy G., Tau interacts with src-family non-receptor tyrosine kinases, J. Cell Sci., 1998, 111, 3167–3177 Google Scholar

  • [77] Lambert M.P., Barlow A.K., Chromy B.A., Edwards C., Freed R., Liosatos M., et al., Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins, Proc. Natl. Acad. Sci. USA, 1998, 95, 6448–6453 http://dx.doi.org/10.1073/pnas.95.11.6448CrossrefGoogle Scholar

  • [78] Lee G., Thangavel R., Sharma V.M., Litersky J.M., Bhaskar K., Fang S.M., et al., Phosphorylation of tau by fyn: implications for Alzheimer’s disease, J. Neurosci., 2004, 24, 2304–2312 http://dx.doi.org/10.1523/JNEUROSCI.4162-03.2004CrossrefGoogle Scholar

  • [79] Ho G.J., Hashimoto M., Adame A., Izu M., Alford M.F., Thal L.J., et al., Altered p59Fyn kinase expression accompanies disease progression in Alzheimer’s disease: implications for its functional role, Neurobiol. Aging, 2005, 26, 625–635 http://dx.doi.org/10.1016/j.neurobiolaging.2004.06.016CrossrefGoogle Scholar

  • [80] Arendt T., Holzer M., Grossmann A., Zedlick D., Bruckner M.K., Increased expression and subcellular translocation of the mitogen activated protein kinase kinase and mitogen-activated protein kinase in Alzheimer’s disease, Neuroscience, 1995, 68, 5–18 http://dx.doi.org/10.1016/0306-4522(95)00146-ACrossrefGoogle Scholar

  • [81] Vincent I., Jicha G., Rosado M., Dickson D.W., Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain, J. Neurosci., 1997, 17, 3588–3598 Google Scholar

  • [82] Vincent I., Zheng J., Dickson D.W., Kress Y., Davies P., Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease, Neurobiol. Aging, 1998, 19, 287–296 http://dx.doi.org/10.1016/S0197-4580(98)00071-2CrossrefGoogle Scholar

  • [83] Yang Y., Mufson E.J., Herrup K., Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease, J. Neurosci., 2003, 23, 2557–2563 Google Scholar

  • [84] Nixon, R.A., Cataldo A.M., Paskevitch P. A., Hamilton D.J., Wheelock T.R., Kanaley-Andrews L., The lysosomal system in neurons: involvement at multiple stages in Alzheimer’s disease pathogenesis, Ann. NY Acad. Sci., 1992, 674, 65–88 http://dx.doi.org/10.1111/j.1749-6632.1992.tb27478.xCrossrefGoogle Scholar

  • [85] Cataldo A.M., Barnett J.L., Berman S.A., Li J., Quarless S., Bursztajn S., et al., Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system, Neuron, 1995, 14, 671–680 http://dx.doi.org/10.1016/0896-6273(95)90324-0CrossrefGoogle Scholar

  • [86] Yasojima K., Kuret J., DeMaggio A.J., McGeer E., McGeer P.L., Casein kinase 1 delta mRNA is upregulated in Alzheimer disease brain, Brain Res., 2000, 865, 116–120 http://dx.doi.org/10.1016/S0006-8993(00)02200-9CrossrefGoogle Scholar

  • [87] Baumann K., Mandelkowa E.M., Biernata J., Piwnica-Wormsb H., Mandelkow E., Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin dependent kinases Cdk2 and Cdk5, FEBS Lett., 1993, 336, 417–424 http://dx.doi.org/10.1016/0014-5793(93)80849-PCrossrefGoogle Scholar

  • [88] Drewes G., Ebneth A., Preuss U., Mandelkow E.M., Mandelkow E., MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption, Cell, 1997, 89, 297–308 http://dx.doi.org/10.1016/S0092-8674(00)80208-1CrossrefGoogle Scholar

  • [89] Yoshida H., Watanabe A., Ihara Y., Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer’s disease, J. Biol. Chem., 1998, 273, 9761–9768 http://dx.doi.org/10.1074/jbc.273.16.9761CrossrefGoogle Scholar

  • [90] de la Monte S.M., Ng S.C., Hsu D.W., Aberrant GAP-43 gene expression in Alzheimer’s disease, Am. J. Pathol., 1995, 147, 934–946 Google Scholar

  • [91] Caceres A., Kosik K.S., Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons, Nature, 1990, 343, 461–463 http://dx.doi.org/10.1038/343461a0CrossrefGoogle Scholar

  • [92] Mandell J., Banker G.A., A spatial gradient of tau protein phosphorylation in nascent axons, J. Neurosci., 1996, 16, 5727–5740 Google Scholar

  • [93] Biernat J., Mandelkow E.M., The development of cell processes induced by tau protein requires phosphorylation of Serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains, Mol. Biol. Cell, 1999, 10, 727–740 Google Scholar

  • [94] Biernat J., Wu Y.Z., Timm T., Zheng-Fischöfer Q., Mandelkow E., Meijer L., et al., Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity, Mol. Biol. Cell, 2002, 13, 4013–4028 http://dx.doi.org/10.1091/mbc.02-03-0046CrossrefGoogle Scholar

  • [95] Belkadi A., LoPresti P., Truncated tau with the Fyn-binding domain and without the microtubule-binding domain hinders the myelinating capacity of an oligodendrocyte cell line, J. Neurochem., 2008, 107, 351–360 http://dx.doi.org/10.1111/j.1471-4159.2008.05600.xCrossrefGoogle Scholar

  • [96] Takei Y., Teng J., Harada A., Hirokawa N., Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes, J. Cell Biol., 2000, 150, 989–1000 http://dx.doi.org/10.1083/jcb.150.5.989CrossrefGoogle Scholar

  • [97] Corsellis J.A., Brierley J.B., Observations on the pathology of insidious dementia following head injury, J. Ment. Sci., 1959, 105, 714–720 Google Scholar

  • [98] Corsellis J.A., Bruton C.J., Freeman-Browne D., The aftermath of boxing, Psychol. Med., 1973, 3, 270–303 http://dx.doi.org/10.1017/S0033291700049588CrossrefGoogle Scholar

  • [99] McKee A.C., Cantu R.C., Nowinski C.J., Hedley-Whyte E.T., Gavett B.E., Budson A.E., et al., Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury, J. Neuropathol. Exp. Neurol., 2009, 68, 709–735 http://dx.doi.org/10.1097/NEN.0b013e3181a9d503CrossrefGoogle Scholar

  • [100] Rapoport M., Dawson H.N., Binder L.I., Vitek M.P., Ferreira A., Tau is essential to beta-amyloid-induced neurotoxicity, Proc. Natl. Acad. Sci. USA, 2002, 99, 6364–6369 http://dx.doi.org/10.1073/pnas.092136199CrossrefGoogle Scholar

  • [101] King M.E., Kan H., Baas P.W., Erisir A., Glabe C., Bloom G.S., Taudependent microtubule disassembly initiated by prefibrillar betaamyloid, J. Cell Biol., 2006, 175, 541–546 http://dx.doi.org/10.1083/jcb.200605187CrossrefGoogle Scholar

  • [102] Götz J., Probst A., Spillatini M.G., Schäfer T., Jakes R., Bürki K., et al., Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform, EMBO J., 1995, 14, 1304–1313 Google Scholar

  • [103] Brion J.P., Tremp G., Octave J.N., Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease, Am. J. Pathol., 1999, 54, 255–270 http://dx.doi.org/10.1016/S0002-9440(10)65272-8CrossrefGoogle Scholar

  • [104] Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B.I., et al., Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17, Science, 1998, 282, 1914–1917 http://dx.doi.org/10.1126/science.282.5395.1914CrossrefGoogle Scholar

  • [105] DeTure M., Ko L.W., Yen S., Nacharaju P., Easson C., Lewis J., et al., Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions, Brain Res., 2000, 853, 5–14 http://dx.doi.org/10.1016/S0006-8993(99)02124-1CrossrefGoogle Scholar

  • [106] Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al., Altered microtubule organization in small-calibre axons of mice lacking tau protein, Nature, 1994, 369, 488–491 http://dx.doi.org/10.1038/369488a0CrossrefGoogle Scholar

  • [107] Tint I., Slaughter T., Fischer I., Black M.M., Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons, J. Neurosci., 1998, 18, 8660–8673 Google Scholar

  • [108] Amadoro G., Serafino A.L., Barbato C., Ciotti M.T., Sacco A., Calissano P., et al., Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons, Cell. Death Differ., 2004, 11, 217–230 http://dx.doi.org/10.1038/sj.cdd.4401314CrossrefGoogle Scholar

  • [109] Amadoro G., Ciotti M.T., Costanzi M., Cestari V., Calissano P., Canu N., NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation, Proc. Natl. Acad. Sci. USA, 2006, 103, 2892–2897 http://dx.doi.org/10.1073/pnas.0511065103CrossrefGoogle Scholar

  • [110] Corsetti V., Amadoro G., Gentile A., Capsoni S., Ciotti M.T., Cencioni M.T., et al., Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer’s disease models, Mol. Cell. Neurosci., 2008, 38, 381–392 http://dx.doi.org/10.1016/j.mcn.2008.03.011CrossrefGoogle Scholar

  • [111] Horowitz P.M., LaPointe N., Guillozet-Bongaarts A.L., Berry R.W., Binder L.I., N-terminal fragments of tau inhibit full-length tau polymerization in vitro, Biochemistry, 2006, 45, 12859–12866 http://dx.doi.org/10.1021/bi061325gCrossrefGoogle Scholar

  • [112] Gamblin T.C., Berry R.W., Binder L.I., Tau polymerization: role of the amino terminus, Biochemistry, 2003, 42, 2252–2257 http://dx.doi.org/10.1021/bi0272510CrossrefGoogle Scholar

  • [113] Yin H., Kuret J., C-terminal truncation modulates both nucleation and extension phases of tau fibrillization, FEBS Lett., 2006, 580, 211–215 http://dx.doi.org/10.1016/j.febslet.2005.11.077CrossrefGoogle Scholar

  • [114] Zilka N., Filipcik P., Koson P., Fialova L., Skrabana R., Zilkova M., et al., Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo, FEBS Lett., 2006, 580, 3582–3588 http://dx.doi.org/10.1016/j.febslet.2006.05.029CrossrefGoogle Scholar

  • [115] Abraha A., Ghoshal N., Gamblin T. C., Cryns V., Berry R.W., Kuret J., et al., C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease, J. Cell Sci., 2000, 113, 3737–3745 Google Scholar

  • [116] Wang Y.P., Biernat J., Pickhardt M., Mandelkow E., Mandelkow E.M., Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model, Proc. Natl. Acad. Sci. USA, 2007, 104, 10252–10257 http://dx.doi.org/10.1073/pnas.0703676104CrossrefGoogle Scholar

  • [117] Guillozet-Bongaarts A.L., Garcia-Sierra F., Reynolds M.R., Horowitz P.M., Fu Y., Wang T., et al., Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease, Neurobiol. Aging, 2005, 26, 1015–22 http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.019CrossrefGoogle Scholar

  • [118] Roberson E.D., Scearce-Levie K., Palop J.J., Yan F., Cheng I.H., Wu T., et al., Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model, Science, 2007, 316, 750–754 http://dx.doi.org/10.1126/science.1141736CrossrefGoogle Scholar

  • [119] Folwell J., Cowan C.M., Ubhi K.K., Shiabh H., Newman T.A., Shepherd D., et al., Aβ exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer’s disease, Exp. Neurol., 2009, 223, 401–409 http://dx.doi.org/10.1016/j.expneurol.2009.09.014CrossrefGoogle Scholar

  • [120] Mudher A., Lovestone S., Alzheimer’s disease-do tauists and baptists finally shake hands?, Trends Neurosci., 2002, 25, 22–26 http://dx.doi.org/10.1016/S0166-2236(00)02031-2CrossrefGoogle Scholar

  • [121] He H.J., Wang X.S., Pan R., Wang D.L., Liu M.N., He R.Q., The proline rich domain of tau plays a role in interactions with actin, BMC Cell Biol., 2009, 10, 81–93 http://dx.doi.org/10.1186/1471-2121-10-81CrossrefGoogle Scholar

  • [122] Perez M., Valpuesta J.M., Medina M., Montejo de Garcini E., J. Avila, Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction, J. Neurochem., 1996, 67, 1183–1190 http://dx.doi.org/10.1046/j.1471-4159.1996.67031183.xCrossrefGoogle Scholar

  • [123] Magnani E., Fan J., Gasparini L., Golding M., Williams M., Schiavo G., et al., Interaction of tau protein with the dynactin complex, EMBO J., 2007, 26, 4546–4554 http://dx.doi.org/10.1038/sj.emboj.7601878CrossrefGoogle Scholar

  • [124] Fulga T.A., Elson-Schwab I., Khurana V., Steinhilb M.L., Spires T.L., Hyman B.T., et al., Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo, Nat. Cell Biol., 2007, 9, 139–148 http://dx.doi.org/10.1038/ncb1528CrossrefGoogle Scholar

  • [125] Blard O., Feuillette S., Bou J., Chaumette B., Frebourg T., Campion D., et al., Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila, Hum. Mol. Genet., 2007, 16, 555–566 http://dx.doi.org/10.1093/hmg/ddm011CrossrefGoogle Scholar

  • [126] Lee G., Tau and src family tyrosine kinases, Biochim. Biophys. Acta, 2005, 1739, 323–330 http://dx.doi.org/10.1016/j.bbadis.2004.09.002CrossrefGoogle Scholar

  • [127] Lu P.J., Wulf G., Zhou X.Z., Davies P., Lu K.P., The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein, Nature, 1999, 399, 784–788 http://dx.doi.org/10.1038/21650CrossrefGoogle Scholar

  • [128] Dickey C.A., Yue M., Lin W.L., Dickson D.W., Dunmore J.H., Lee W.C., et al., Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species, J. Neurosci., 2006, 26, 6985–6996 http://dx.doi.org/10.1523/JNEUROSCI.0746-06.2006CrossrefGoogle Scholar

  • [129] Sarkar M., Kuret J., Lee G., Two motifs within the tau microtubule binding domain mediate its association with the hsc70 molecular chaperone, J. Neurosci. Res., 2008, 86, 2763–2773 http://dx.doi.org/10.1002/jnr.21721CrossrefGoogle Scholar

  • [130] Makrides V., Shen T.E., Bhatia R., Smith B.L., Thimm, J., Lal, R., et al., Microtubule-dependent oligomerization of tau, Implications for physiological tau function and tauopathies, J. Biol. Chem., 2003, 278, 33298–33304 http://dx.doi.org/10.1074/jbc.M305207200CrossrefGoogle Scholar

  • [131] Wang J.Z., Grundke-Iqbal I., Iqbal K., Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration, Eur. J. Neurosci., 2007, 25, 59–68 http://dx.doi.org/10.1111/j.1460-9568.2006.05226.xCrossrefGoogle Scholar

  • [132] Samsonov A., Yu J.Z., Rasenick M., Popov S.V., Tau interaction with microtubules in vivo, J. Cell Sci., 2004, 117,25, 6129–6141 http://dx.doi.org/10.1242/jcs.01531CrossrefGoogle Scholar

  • [133] Mocanu M.M., Nissen A., Eckermann K., Khlistunova I., Biernat J., Drexler D., et al., The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy, J. Neurosci., 2008, 28, 737–748 http://dx.doi.org/10.1523/JNEUROSCI.2824-07.2008CrossrefGoogle Scholar

  • [134] Nixon, R.A., Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases, Neurobiol. Aging, 2005, 26, 373–382 http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.018CrossrefGoogle Scholar

  • [135] Nixon R.A., Wegiel J., Kumar A., Yu W.H., Peterhoff C., Cataldo A., et al., Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study, J. Neuropathol. Exp. Neurol., 2005, 64, 120–122 Google Scholar

  • [136] Boland B.A., Kumar A., Lee F.M., Platt J., Wegiel J., Yu W.H., et al., Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease, J. Neurosci., 2008, 28, 6926–6937 http://dx.doi.org/10.1523/JNEUROSCI.0800-08.2008CrossrefGoogle Scholar

  • [137] Park S.Y., Ferreira A., The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloidinduced neurodegeneration, J. Neurosci., 2005, 25, 5365–5375 http://dx.doi.org/10.1523/JNEUROSCI.1125-05.2005CrossrefGoogle Scholar

  • [138] Gomez-Ramos A., Diaz-Hernandez M., Cuadros R., Hernandez F., Avila J., Extracellular tau is toxic to neuronal cells, FEBS Lett., 2006, 580, 4842–4850 http://dx.doi.org/10.1016/j.febslet.2006.07.078CrossrefGoogle Scholar

  • [139] Gómez-Ramos A., Díaz-Hernández M., Rubio A., Miras-Portugal M.T., Avila J., Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells, Mol. Cell. Neurosci., 2008, 37, 673–681 http://dx.doi.org/10.1016/j.mcn.2007.12.010CrossrefGoogle Scholar

  • [140] Braak E., Braak H., Mandelkow E.M., A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads, Acta Neuropathol., 1994, 87, 554–567 http://dx.doi.org/10.1007/BF00293315CrossrefGoogle Scholar

  • [141] Santacruz K., Lewis J., Spires T., Paulson J., Kotilinek L., Ingelsson M., et al., Tau suppression in a neurodegenerative mouse model improves memory function, Science, 2005, 309, 476–481 http://dx.doi.org/10.1126/science.1113694CrossrefGoogle Scholar

  • [142] Berger Z., Roder H., Hanna A., Carlson A., Rangachari V., Yue M., et al., Accumulation of pathological tau species and memory loss in a conditional model of tauopathy, J. Neurosci., 2007, 27, 3650–3662 http://dx.doi.org/10.1523/JNEUROSCI.0587-07.2007CrossrefGoogle Scholar

  • [143] Hall G.F., Chu B., Lee G., Yao J., Human tau filaments induce microtubule and synapse loss in vertebrate central neurons, J. Cell Sci., 2000, 120, 1373–1387 Google Scholar

  • [144] Wittmann C.W., Wszolek M.F., Shulman J.M., Salvaterra P.M., Lewis J., Hutton M., et al., Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles, Science, 2001, 293, 5530, 711–714 http://dx.doi.org/10.1126/science.1062382CrossrefGoogle Scholar

  • [145] Lee S., Jung C., Lee G, Hall G.F., Tauopathy mutants P301L, G272V, R406W and V337M accelerate neurodegeneration in the lamprey in situ cellular tauopathy model, J. Alzheimers Dis., 2009, 16, 99–111 Google Scholar

  • [146] Yeh P., Chang C., Phosphorylation alters tau distribution and elongates life span in Drosophila, J. Alzheimers Dis., 2010, 21, 543–556 Google Scholar

  • [147] Chatterjee S., Sang T.K., Lawless G.M., Jackson G.R., Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model, Hum. Mol. Genet., 2009, 18, 164–177 http://dx.doi.org/10.1093/hmg/ddn326CrossrefGoogle Scholar

  • [148] Maeda S., Sahara N., Saito Y., Murayama M., Yoshiike Y., Kim H., et al., Granular tau oligomers as intermediates of tau filaments, Biochemistry, 46, 3856–3861 Google Scholar

  • [149] Maeda S., Sahara N., Saito Y., Murayama S., Ikai A., Takashima A., Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease, Neurosci. Res., 2006, 54, 197–201 http://dx.doi.org/10.1016/j.neures.2005.11.009CrossrefGoogle Scholar

  • [150] Sahara N., Maeda S., Takashima A., Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration, Curr. Alz. Res., 2008, 5, 591–598 http://dx.doi.org/10.2174/156720508786898442CrossrefGoogle Scholar

  • [151] Bretteville A., Planel E., Tau aggregates: toxic, inert, or protective species?, J. Alzheimers Dis., 2008, 14, 431–436 Google Scholar

  • [152] Patterson K.C., Remmer Y., Fu S., Brooker N., Kanaan L., Vana S., et al., Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease, J. Biol. Chem., 2011, 286, 23063–23076 http://dx.doi.org/10.1074/jbc.M111.237974CrossrefGoogle Scholar

  • [153] Iliev A.I., Ganesan S., Bunt G., Wouters F.S., Removal of patternbreaking sequences in microtubule binding repeats produces instantaneous tau aggregation and toxicity, J. Biol. Chem., 2006, 281, 37195–37204 http://dx.doi.org/10.1074/jbc.M604863200CrossrefGoogle Scholar

  • [154] Lasagna-Reeves C.A., Castillo-Carranza D.L., Guerrero-Muoz M.J., Jackson G.R., Kayed R., Preparation and characterization of neurotoxic tau oligomers, Biochemistry, 2010, 49, 10039–10041 http://dx.doi.org/10.1021/bi1016233CrossrefGoogle Scholar

  • [155] Andorfer C., Acker C.M., Kress Y., Hof P.R., Duff K., Davies P., Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms, J. Neurosci., 2005, 225, 5446–5545 http://dx.doi.org/10.1523/JNEUROSCI.4637-04.2005CrossrefGoogle Scholar

  • [156] Ambegaokar S., Jackson G., Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation, Hum. Mol. Genet., 2011, 20, 4947–4977 http://dx.doi.org/10.1093/hmg/ddr432CrossrefGoogle Scholar

  • [157] Pei J.J., Grundke-Iqbal I., Iqbal K., Bogdanovic N., Winblad B., Cowburn R.F., Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer’s disease neurofibrillary degeneration, Brain Res., 1998, 797, 267–277 http://dx.doi.org/10.1016/S0006-8993(98)00296-0CrossrefGoogle Scholar

  • [158] Stone J.G., Siedlak S.L., Tabaton M., Hirano A., Castellani R.J., Santocanale C., et al., The cell cycle regulator phosphorylated retinoblastoma protein is associated with tau pathology in several tauopathies, J. Neuropathol. Exp. Neurol., 2011, 70, 578–587 http://dx.doi.org/10.1097/NEN.0b013e3182204414CrossrefGoogle Scholar

  • [159] Morsch R., Simon W., Coleman P.D., Neurons may live for decades with neurofibrillary tangles, J. Neuropathol. Exp. Neurol., 1999, 58, 188–197 http://dx.doi.org/10.1097/00005072-199902000-00008CrossrefGoogle Scholar

  • [160] Bobinski M., Wegiel J., Tarnawski M., Bobinski M., Reisberg B., de Leon M.J., et al., Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease, J. Neuropathol. Exp. Neurol., 1997, 56, 414–420 http://dx.doi.org/10.1097/00005072-199704000-00010CrossrefGoogle Scholar

  • [161] Müller W., Eckert A., Kurz C., Eckert G., Leuner K., Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer’s disease — therapeutic aspects, Mol. Neurobiol., 2010, 41, 159–171 http://dx.doi.org/10.1007/s12035-010-8141-5CrossrefGoogle Scholar

  • [162] Swerdlow R.H., Khan S.M., A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 2004, 63, 8–20 http://dx.doi.org/10.1016/j.mehy.2003.12.045CrossrefGoogle Scholar

  • [163] Fang Y., Wu N., Gan X., Yan W., Morrell J. C., Gould, S.J., Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes, PLoS Biol., 2007, 5, e158 http://dx.doi.org/10.1371/journal.pbio.0050158CrossrefGoogle Scholar

  • [164] Vega I.E., Cui L., Propst J.A., Hutton M.L., Lee G., Yen S.H., Increase in tau tyrosine phosphorylation correlates with the formation of tau aggregates, Mol. Brain Res., 2005, 138, 135–144 http://dx.doi.org/10.1016/j.molbrainres.2005.04.015CrossrefGoogle Scholar

  • [165] Sverdlov M., Shajahan A.N., Minshall R.D., Tyrosine phosphorylationdependence of caveolae-mediated endocytosis, J. Cell. Mol. Med., 2007, 11, 1239–1250 http://dx.doi.org/10.1111/j.1582-4934.2007.00127.xCrossrefGoogle Scholar

  • [166] Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., et al., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease, J. Biol. Chem., 2012, 287, 3842–3849 http://dx.doi.org/10.1074/jbc.M111.277061CrossrefGoogle Scholar

  • [167] Zehe C., Engling A., Wegehingel S., Schäfer T., Nickel W., Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2, Proc. Natl. Acad. Sci. USA, 2006, 103, 15479–15484 http://dx.doi.org/10.1073/pnas.0605997103CrossrefGoogle Scholar

  • [168] Goedert M., Jakes R., Spillantini M.G., Hasegawa M., Smith M.J., Crowther R.A., Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature, 1996, 383, 550–553 http://dx.doi.org/10.1038/383550a0CrossrefGoogle Scholar

  • [169] Gray E.G., Paula-Barbosa M., Roher A., Alzheimer’s disease: paired helical filaments and cytomembranes, Neuropathol. Appl. Neurobiol., 1987, 13, 91–110 http://dx.doi.org/10.1111/j.1365-2990.1987.tb00174.xCrossrefGoogle Scholar

  • [170] Fath T., Eidenmüller J., Brandt R., Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease, J. Neurosci., 2002, 22, 9733–9741 Google Scholar

  • [171] Barré P., Eliezer D., Folding of the repeat domain of tau upon binding to lipid surfaces, J. Mol. Biol., 2006, 362, 312–326 http://dx.doi.org/10.1016/j.jmb.2006.07.018CrossrefGoogle Scholar

  • [172] Wilson D.M., Binder, L.I., Free fatty acids stimulate the polymerization of tau and amyloid beta peptides, Am. J. Pathol., 1997, 161, 2321–2335 Google Scholar

  • [173] Chirita C.N., Necula M., Kuret J., Anionic micelles and vesicles induce tau fibrillization in vitro, J. Biol. Chem., 2003, 278, 25644–25650 http://dx.doi.org/10.1074/jbc.M301663200CrossrefGoogle Scholar

  • [174] Kampers T., Friedhoff P., Biernat J., Mandelkow E.M., RNA stimulates aggregation of microtubule-associated protein-tau into Alzheimerlike paired helical filaments, FEBS Lett., 1997, 399, 344–349 http://dx.doi.org/10.1016/S0014-5793(96)01386-5CrossrefGoogle Scholar

  • [175] Hall G.F., What is the common link between protein aggregation and interneuronal lesion propagation in neurodegenerative disease?, In: Chang R. (Ed.) Neurodegenerative diseases — processes, prevention, protection and monitoring, InTech, 2011, 1–17 Google Scholar

  • [176] Farah C.A., Perreault S., Liazoghli D., Desjardins M., Anton A., Lauzon M., et al., Tau interacts with Golgi membranes and mediates their association with microtubules, Cell Motil. Cytoskeleton, 2006, 63, 710–724 http://dx.doi.org/10.1002/cm.20157CrossrefGoogle Scholar

  • [177] Liazoghli D., Perreault S., Micheva K.D., Desjardins M., Leclerc N., Fragmentation of the Golgi apparatus induced by overexpression of WT and mutant human tau forms in neurons, Am. J. Pathol., 2005, 166, 1499–1514 http://dx.doi.org/10.1016/S0002-9440(10)62366-8CrossrefGoogle Scholar

  • [178] Kim W., Lee S., Hall G.F., Secretion of human tau fragments resembling CSF-tau in Alzheimer’s disease is modulated by the presence of the exon 2 insert, FEBS Lett., 2010, 584, 3085–3088 http://dx.doi.org/10.1016/j.febslet.2010.05.042CrossrefGoogle Scholar

  • [179] Lee S., Kim W., Li Z., Hall G.F., Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model, Int. J. Alzheimers Dis., 2012, 172837 Google Scholar

  • [180] Hamano T., Gendron T.F., Causevic E., Yen S.H., Lin W.L., Isidoro C., et al., Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression, Eur. J. Neurosci., 2008, 27, 1119–11130 http://dx.doi.org/10.1111/j.1460-9568.2008.06084.xCrossrefGoogle Scholar

  • [181] Abrahamsen H., Stenmark H., Protein secretion: unconventional exit by exophagy, Curr. Biol., 2011, 20, R415–R418 http://dx.doi.org/10.1016/j.cub.2010.03.011CrossrefGoogle Scholar

  • [182] Funk K., Kuret J., Lysosomal fusion dysfunction as a unifying hypothesis for Alzheimer’s disease pathology, Int. J. Alzheimers Dis., 2012, 752894 Google Scholar

  • [183] Clavaguera F., Bolmont T., Crowther R.A., Abramowski D., Frank S., Probst A., et al., Transmission and spreading of tauopathy in transgenic mouse brain, Nat. Cell Biol., 2009, 11, 909–913 http://dx.doi.org/10.1038/ncb1901CrossrefGoogle Scholar

  • [184] Liu L., Drouet V., Wu J.W., Witter M.P., Small S.A., Clell C., et al., Trans-synaptic spread of tau pathology in vivo, PloS One, 2012, 7, e31302 http://dx.doi.org/10.1371/journal.pone.0031302CrossrefGoogle Scholar

  • [185] deCalignon A., Polydoro M., Suárez-Calvet M., William C., Adamowicz D.H., Kopeikina K.J., et al., Propagation of tau pathology in a model of early Alzheimer’s disease, Neuron, 2012, 73, 685–697 http://dx.doi.org/10.1016/j.neuron.2011.11.033CrossrefGoogle Scholar

  • [186] Morrison J.H., Hof P.R. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer’s disease, Prog. Brain Res., 2002, 136, 467–486 http://dx.doi.org/10.1016/S0079-6123(02)36039-4CrossrefGoogle Scholar

  • [187] Ko L.W., Rush T., Sahara N., Kersh J.S., Easson C., Deture M., et al., Assembly of filamentous tau aggregates in human neuronal cells, J. Alzheimers Dis., 2004, 6, 605–622 Google Scholar

  • [188] http://www.alzgene.org/ Google Scholar

  • [189] Jensen L.J., Kuhn M., Stark M., Chaffron S., Creevey C. Muller J., et al., STRING 8 — a global view on proteins and their functional interactions in 630 organisms, Nucleic Acids Res., 2009, 37(Database issue), D412–D416 Google Scholar

  • [190] Mathivanan S., Fahner C.J., Reid G.E., Simpson R.J., ExoCarta, 2012, database of exosomal proteins, RNA and lipids, Nucleic Acids Res., 2012, 40(Database issue), D1241–1244 http://dx.doi.org/10.1093/nar/gkr828CrossrefGoogle Scholar

  • [191] Hall G.F., Lee S., Yao J., Neurofibrillary degeneration can be arrested in an in vivo cellular model of human tauopathy by application of a compound which inhibits tau filament formation in vitro, J. Mol. Neurosci., 2002, 19, 253–260 http://dx.doi.org/10.1385/JMN:19:3:251CrossrefGoogle Scholar

  • [192] Kim W., Lee S., Jung C., Ahmed A., Lee G., Hall G.F., Interneuronal transfer of human tau between lamprey central neurons in situ, J. Alzheimers Dis., 2010, 19, 647–664 Google Scholar

  • [193] Le M.N., Kim W., Lee S., McKee A.C., Hall G.F., Multiple mechanisms of extracellular tau spreading in a non-transgenic tauopathy model, Am. J. Neurodegener. Dis., 2012, 1, 316–333 Google Scholar

  • [194] Hall G.F., Saman S., Secretion or death? What is the significance of elevated CSF-tau in early AD?, Comm. Integr. Biol., 2012, 5, 1–4 http://dx.doi.org/10.4161/cib.18149CrossrefGoogle Scholar

  • [195] Frost B., Jacks R.L., Diamond M.I., Propagation of tau misfolding from the outside to the inside of a cell, J. Biol. Chem., 2009, 284, 12845–12852 http://dx.doi.org/10.1074/jbc.M808759200CrossrefGoogle Scholar

  • [196] Honson N.S., Jensen J.R., Abraha A., Hall G.F., Kuret J., Small-molecule mediated neuroprotection in an in situ model of tauopathy, Neurotox. Res., 2009, 15, 274–283 http://dx.doi.org/10.1007/s12640-009-9028-yCrossrefGoogle Scholar

  • [197] Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., et al., Alzheimer’s disease beta-amyloid peptides are released in association with exosomes, Proc. Natl. Acad. Sci. USA, 2006, 103, 11242–11247 http://dx.doi.org/10.1073/pnas.0603838103CrossrefGoogle Scholar

  • [198] Emmanouilidou E., Melachroinou K., Roumeliotis T., Garbis S.D., Ntzouni M., Margaritis L.H., et al., Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival, J. Neurosci., 2010, 30, 6838–6851 http://dx.doi.org/10.1523/JNEUROSCI.5699-09.2010CrossrefGoogle Scholar

  • [199] Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., et al., Cells release prions in association with exosomes, Proc. Natl. Acad. Sci. USA, 2004, 101, 9683–9688 http://dx.doi.org/10.1073/pnas.0308413101CrossrefGoogle Scholar

  • [200] Soto C., Estrada L., Protein misfolding and neurodegeneration, Arch. Neurol., 2008, 65, 184–189 http://dx.doi.org/10.1001/archneurol.2007.56CrossrefGoogle Scholar

  • [201] Aguzzi A., Sigurdson C., Heikenwaelder M., Molecular mechanisms of prion pathogenesis, Annu. Rev. Pathol., 3, 11–40 Google Scholar

  • [202] Novak P., Prcina M., Kontsekova E., Tauons and prions: infamous cousins?, J. Alzheimers Dis., 2011, 26, 413–430 http://dx.doi.org/10.1177/1533317511418955CrossrefGoogle Scholar

  • [203] Su J.H., Deng G., Cotman C.W., Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation, Neurobiol. Dis., 1997, 4, 365–375 http://dx.doi.org/10.1006/nbdi.1997.0164CrossrefGoogle Scholar

  • [204] Armstrong R.A., Cairns N.J., Lantos P.L., Clustering of cerebral cortical lesions in patients with corticobasal degeneration, Neurosci. Lett., 1999, 268, 5–8 http://dx.doi.org/10.1016/S0304-3940(99)00309-2CrossrefGoogle Scholar

  • [205] Armstrong R.A., Cairns N.J., Lantos P.L., Clustering of Pick bodies in Pick’s disease, Neurosci. Lett., 1998, 242, 81–84 http://dx.doi.org/10.1016/S0304-3940(98)00052-4CrossrefGoogle Scholar

  • [206] Armstrong R.A., Cairns N.J., Lantos P.L., What does the study of spatial patterns tell us about the pathogenesis of neurodegenerative disorders?, Neuropathology, 2001, 21, 1–12 http://dx.doi.org/10.1046/j.1440-1789.2001.00373.xCrossrefGoogle Scholar

  • [207] McKee A.C., Stern R.A., Nowinski C., Stein T., Alvarez V.E., Daneshvar D., et al., The spectrum of disease in chronic traumatic encephalopathy, Brain, 2013, 136, 43–64 CrossrefGoogle Scholar

  • [208] Guo J.L., Lee V.M.Y., Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles, J. Biol. Chem., 2011, 286, 15317–15331 http://dx.doi.org/10.1074/jbc.M110.209296CrossrefGoogle Scholar

  • [209] Kfoury N., Holmes B.B., Jiang H., Holtzman D.M., Diamond M.I., Transcellular propagation of tau aggregation by fibrillar species, J. Biol. Chem., 2012, 287, 19440–19451 http://dx.doi.org/10.1074/jbc.M112.346072CrossrefGoogle Scholar

  • [210] Wu J.W., Herman M., Liu L., Simoes S., Acker C.M., Figueroa H., et al., Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons, J. Biol. Chem., 2013, 288, 1856–1870 http://dx.doi.org/10.1074/jbc.M112.394528CrossrefGoogle Scholar

  • [211] Iba M., Guo J.L., McBride J.D., Zhang B., Trojanowski J.Q., Lee V.M., Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy, J. Neurosci., 2013, 33, 1024–1037 http://dx.doi.org/10.1523/JNEUROSCI.2642-12.2013CrossrefGoogle Scholar

  • [212] Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Guerrero-Munoz M.J., Kiritoshi T., Neugebauer V., et al., Alzheimer brainderived tau oligomers propagate pathology from endogenous tau, Sci. Rep., 2012, 2, 700 http://dx.doi.org/10.1038/srep00700CrossrefGoogle Scholar

  • [213] Hall G.F., Patuto B.A., Is tau now ready for admission to the prion club?, Prion, 2012, 6, 223–233 http://dx.doi.org/10.4161/pri.19912CrossrefGoogle Scholar

  • [214] Canu N., Filesi I., Pristerà A., Ciotti M.T., Biocca S., Altered intracellular distribution of PrPC and impairment of proteasome activity in tau overexpressing cortical neurons, J. Alzheimers Dis., 2011, 27, 603–613 Google Scholar

  • [215] Litman P., Barg J., Rindzoonski L., Ginzburg I., Subcellular localization of tau mRNA in differentiating neuronal cell culture: Implications for neuronal polarity, Neuron, 1993, 10, 627–638 http://dx.doi.org/10.1016/0896-6273(93)90165-NCrossrefGoogle Scholar

  • [216] Aronov S., Aranda G., Behar L., Ginzberg I., Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targetting signal, J. Neurosci., 2001, 21, 6577–6587 Google Scholar

  • [217] Schraen-Maschke S., Dhaenens C.M., Delacourte A., Sablonniere B., Microtubule-associated protein tau gene: a risk factor in human neurodegenerative diseases, Neurobiol. Dis., 2004, 15, 449–460 http://dx.doi.org/10.1016/j.nbd.2003.12.009CrossrefGoogle Scholar

  • [218] Caffrey T, Joachim C., Wade-Martins R., Haplotype-specific expression of the N-terminal exons 2 and 3 at the human MAPT locus, Neurobiol. Aging, 2008, 29, 1923–1929 http://dx.doi.org/10.1016/j.neurobiolaging.2007.05.002CrossrefGoogle Scholar

  • [219] Wegiel J., Gong C.X., Hwang Y.W., The role of DYRK1A in neurodegenerative diseases, FEBS J., 2011, 278, 236–245 http://dx.doi.org/10.1111/j.1742-4658.2010.07955.xCrossrefGoogle Scholar

  • [220] McNaughton D., et al., Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series, Neurobiol. Aging, 2012, 33, 426.e13–e21 Google Scholar

  • [221] Mac Donald C.L., Johnson A.M., Cooper D., Nelson E.C., Werner N.J., Shimony J.S, et al., Detection of blast-related traumatic brain injury in U.S. military personnel, N. Engl. J. Med., 2011, 364, 2091–2100 http://dx.doi.org/10.1056/NEJMoa1008069CrossrefGoogle Scholar

  • [222] Hall G.F., Poulos A., Cohen M.J., Sprouts emerging from the dendrites of axotomized lamprey central neurons have axonlike ultrastructure, J. Neurosci., 1989, 9, 588–599 Google Scholar

  • [223] Hall G.F., Yao J., Selzer M., Kosik K.S., Cytoskeletal correlates to cell polarity loss following axotomy of lamprey central neurons, J. Neurocytol., 1997, 26, 733–753 http://dx.doi.org/10.1023/A:1018562331003CrossrefGoogle Scholar

  • [224] Rose P.K., MacDermid V., Joshi M., Neuber-Hess M., Emergence of axons from distal dendrites of adult mammalian neurons following a permanent axotomy, Eur. J. Neurosci., 2001, 13, 1166–1176 http://dx.doi.org/10.1046/j.0953-816x.2001.1490.xCrossrefGoogle Scholar

  • [225] Singleton R.H., Zhu J., Stone J.R., Povlishock J.T., Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death, J. Neurosci., 2002, 22, 791–802 Google Scholar

  • [226] Amadoro G., Corsetti V., Stringaro A., Colone M., D’Aguanno S., Meli G., et al., A NH2 tau fragment targets neuronal mitochondria at AD synapses: possible implications for neurodegeneration, J. Alzheimers Dis., 2010, 21, 445–470 Google Scholar

  • [227] Thies E., Mandelkow E.M., Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1, J. Neurosci., 2007, 27, 2896–2907 http://dx.doi.org/10.1523/JNEUROSCI.4674-06.2007CrossrefGoogle Scholar

  • [228] Kins S., Crameri A., Evans D.R., Hemmings B.A., Nitsch R.M., Götz J., Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice, J. Biol. Chem., 2001, 276, 38193–38200 Google Scholar

  • [229] Lazarov O., Lee M., Peterson D.A., Sisodia S.S.,Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice, J. Neurosci., 2002, 22, 9785–9793 Google Scholar

  • [230] Klein W.L., Synaptic targeting by Abeta oligomers (ADDLS) as a basis for memory loss in early Alzheimer’s disease, Alzheimers Dement., 2006, 2, 43–55 http://dx.doi.org/10.1016/j.jalz.2005.11.003CrossrefGoogle Scholar

  • [231] Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 2002, 416, 535–539 http://dx.doi.org/10.1038/416535aCrossrefGoogle Scholar

  • [232] Tsai J., Grutzendler J., Duff K., Gan W.B., Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches, Nat. Neurosci., 2004, 7, 1181–1183 http://dx.doi.org/10.1038/nn1335CrossrefGoogle Scholar

  • [233] Boekhoorn K., Terwel D., Biemans B., Borghgraef P., Wiegert O., Ramakers G.J., et al., Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy, J. Neurosci., 2006, 26, 3514–3523 http://dx.doi.org/10.1523/JNEUROSCI.5425-05.2006CrossrefGoogle Scholar

  • [234] Zempel H., Thies E., Mandelkow E., Mandelkow E.M., A beta oligomers cause localized Ca2+ elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines, J. Neurosci., 2010, 30, 11938–11950 http://dx.doi.org/10.1523/JNEUROSCI.2357-10.2010CrossrefGoogle Scholar

  • [235] Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models, Cell, 2010, 142, 387–397 http://dx.doi.org/10.1016/j.cell.2010.06.036CrossrefGoogle Scholar

  • [236] Tackenberg C., Brandt R., Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau, J. Neurosci., 2009, 29, 14439–14450 http://dx.doi.org/10.1523/JNEUROSCI.3590-09.2009CrossrefGoogle Scholar

  • [237] Luebke J.I., Weaver C.M., Rocher A.B., Rodriguez A., Crimins J.L., Dickstein D.L., et al., Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models, Brain Struct. Funct., 2010, 214, 181–199 http://dx.doi.org/10.1007/s00429-010-0244-2CrossrefGoogle Scholar

  • [238] Boekhoorn K., Joels M., Lucassen P.J., Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus, Neurobiol. Dis., 24, 1–14, 2006 http://dx.doi.org/10.1016/j.nbd.2006.04.017CrossrefGoogle Scholar

  • [239] Hu W.T., Holtzman D.M., Fagan A.M., Shaw L.M., Perrin R., Arnold S.E., et al., Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease, Neurology, 2012, 79, 897–905 http://dx.doi.org/10.1212/WNL.0b013e318266fa70CrossrefGoogle Scholar

  • [240] Clinton L.K., Blurton-Jones M., Myczek K., Trojanowski J.Q., LaFerla F.M., Synergistic interactions between Abeta, tau, and alphasynuclein: acceleration of neuropathology and cognitive decline, J. Neurosci., 2010, 30, 7281–7289 http://dx.doi.org/10.1523/JNEUROSCI.0490-10.2010CrossrefGoogle Scholar

  • [241] Perry G., Kawai M., Tabaton M., Onorato M., Mulvihill P., Richey P., et al., Neuropil threads of Alzheimer’s disease show a marked alteration of the normal cytoskeleton, J. Neurosci., 1991, 11, 1748–1755 Google Scholar

  • [242] Ihara Y., Massive somatodendritic sprouting of cortical neurons in Alzheimer’s Disease, Brain Res., 1988, 459, 138–144 http://dx.doi.org/10.1016/0006-8993(88)90293-4CrossrefGoogle Scholar

  • [243] Uchida Y., Ohshima T., Sasaki Y., Suzuki H., Yanai S., Yamashita N., et al., Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease, Genes Cells, 2005, 10, 165–179 http://dx.doi.org/10.1111/j.1365-2443.2005.00827.xCrossrefGoogle Scholar

  • [244] Arimura N., Kaibuchi K., Neuronal polarity: from extracellular signals to intracellular mechanisms, Nat. Rev. Neurosci., 2007, 8, 194–205 http://dx.doi.org/10.1038/nrn2056CrossrefGoogle Scholar

  • [245] Leugers C.J., Lee G., Tau potentiates nerve growth factor-induced mitogen-activated protein kinase signaling and neurite initiation without a requirement for microtubule binding, J. Biol. Chem., 2010, 285, 19125–19134 http://dx.doi.org/10.1074/jbc.M110.105387CrossrefGoogle Scholar

  • [246] Cowan C.M., Shepherd D., Mudher A., Insights from Drosophila models of Alzheimer’s disease, Biochem. Soc. Trans., 2010, 38,4, 988–992 http://dx.doi.org/10.1042/BST0380988CrossrefGoogle Scholar

  • [247] Mudher A., Shepherd D., Newman T.A., Mildren P., Jukes J.P., Squire A., et al., GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila, Mol. Psychiatry, 2004, 9, 522–530 http://dx.doi.org/10.1038/sj.mp.4001483CrossrefGoogle Scholar

  • [248] Khurana V., Feany M.B., Connecting cell-cycle activation to neurodegeneration in Drosophila, Biochim. Biophys. Acta, 2007, 1772, 446–456 http://dx.doi.org/10.1016/j.bbadis.2006.10.007CrossrefGoogle Scholar

  • [249] Hall G.F., The biology and pathobiology of tau protein, In: Kavallaris M. (Ed.), The cytoskeleton and human disease, Springer, 2012, 285–313 http://dx.doi.org/10.1007/978-1-61779-788-0_15CrossrefGoogle Scholar

  • [250] Tian A.G., Deng W.M., Par-1 and tau regulate the anterior-posterior gradient of microtubules in Drosophila oocytes, Dev. Biol., 2009, 327, 458–464 http://dx.doi.org/10.1016/j.ydbio.2008.12.031CrossrefGoogle Scholar

  • [251] Li S., Mallory M., Alford M., Tanaka S., Masliah E., Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression, J. Neuropathol. Exp. Neurol., 1997, 56, 901–911 http://dx.doi.org/10.1097/00005072-199708000-00008CrossrefGoogle Scholar

  • [252] Gorlovoy P., Larionov S., Pham T.T.H., Neumann H., Accumulation of tau induced in neurites by microglial proinflammatory mediators, FASEB J., 2009, 23, 2502–2513 http://dx.doi.org/10.1096/fj.08-123877CrossrefGoogle Scholar

  • [253] Maxwell W.L., McCreath B.J., Graham D.I., Gennarelli T.A., Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury, J. Neurocytol., 1995, 24, 925–42 http://dx.doi.org/10.1007/BF01215643CrossrefGoogle Scholar

  • [254] Jafari S.S., Maxwell W.L., Neilson M., Graham D.I., Axonal cytoskeletal changes after non-disruptive axonal injury, J. Neurocytol., 1997, 26, 207–221 http://dx.doi.org/10.1023/A:1018588114648CrossrefGoogle Scholar

  • [255] Uryu K., Chen X.H., Martinez D., Browne K.D., Johnson V.E., Graham D.I., et al., Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans, Exp. Neurol., 2007, 208, 185–192 http://dx.doi.org/10.1016/j.expneurol.2007.06.018CrossrefGoogle Scholar

  • [256] Goldstein L.G., Fisher A., Tagge C., Wojnarowicz M.W., Zhang X.L., Sullivan J.S., et al., Blast exposure induces chronic traumatic encephalopathy and persistent defects in axonal conduction, synaptic plasticity, and hippocampal memory, Sci. Transl. Med., 2012, 4, 134ra60 http://dx.doi.org/10.1126/scitranslmed.3003716CrossrefGoogle Scholar

  • [257] Iijima-Ando K., Sekiya M., Maruko-Otake A., Ohtake Y., Suzuki E., Lu B., et al., Loss of axonal mitochondria promotes taumediated neurodegeneration and Alzheimer’s diseaserelated tau phosphorylation via PAR-1, PLoS Genet., 2012, 8, e1002918 http://dx.doi.org/10.1371/journal.pgen.1002918CrossrefGoogle Scholar

  • [258] Craig A.M., Graf E.R., Linhoff M.W., How to build a central synapse: clues from cell culture, Trends Neurosci., 2006, 29, 8–20 http://dx.doi.org/10.1016/j.tins.2005.11.002CrossrefGoogle Scholar

  • [259] Perez M.R., Zheng H., Lex H., Van der Ploeg T., Koo E., The betaamyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity, J. Neurosci., 1997, 17, 9407–9414 Google Scholar

  • [260] LaPointe N.E., Morfini G., Pigino G., Gaisina I.N., Kozikowski A.P., Binder L.I., et al., The amino terminus of tau inhibits kinesin dependent axonal transport: implications for filament toxicity, J. Neurosci. Res., 2009, 87, 440–451 http://dx.doi.org/10.1002/jnr.21850CrossrefGoogle Scholar

  • [261] Pérez M., Cuadros R., Benítez M.J., Jiménez J.S., Interaction of Alzheimer’s disease amyloid ß peptide fragment 25–35 with tau protein, and with a tau peptide containing the microtubule binding domain, J. Alzheimers Dis., 2004, 6, 461–467 Google Scholar

  • [262] Rank K.B., Pauley A.M., Bhattacharya K., Wang Z., Evans D.B., Fleck T.J., et al., Direct interaction of soluble human recombinant tau protein with Abeta 1–42 results in tau aggregation and hyperphosphorylation by tau protein kinase II, FEBS Lett., 2002, 514, 263–268 http://dx.doi.org/10.1016/S0014-5793(02)02376-1CrossrefGoogle Scholar

  • [263] Guo J.T., Arai J., Miklossy J., McGeer P., Tau forms soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2006, 103, 1953–1958 http://dx.doi.org/10.1073/pnas.0509386103CrossrefGoogle Scholar

  • [264] Funk K.E., Mrak R.E., Kuret J., Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles, Neuropathol. Appl. Neurobiol., 2011, 37, 295–306 http://dx.doi.org/10.1111/j.1365-2990.2010.01135.xCrossrefGoogle Scholar

About the article

Published Online: 2013-06-09

Published in Print: 2013-06-01


Citation Information: Translational Neuroscience, Volume 4, Issue 2, Pages 115–133, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: https://doi.org/10.2478/s13380-013-0114-5.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gilles Gasparoni, Sebastian Bultmann, Pavlo Lutsik, Theo F. J. Kraus, Sabrina Sordon, Julia Vlcek, Vanessa Dietinger, Martina Steinmaurer, Melanie Haider, Christopher B. Mulholland, Thomas Arzberger, Sigrun Roeber, Matthias Riemenschneider, Hans A. Kretzschmar, Armin Giese, Heinrich Leonhardt, and Jörn Walter
Epigenetics & Chromatin, 2018, Volume 11, Number 1
[2]
A. Iatrou, G. Kenis, B. P. F. Rutten, K. Lunnon, and D. L. A. van den Hove
Cellular and Molecular Life Sciences, 2017, Volume 74, Number 3, Page 509
[3]
Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles R. Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan de Silva, Giuseppe Di Giovanni, Claude M. Wischik, and Patrick R. Hof
Progress in Neurobiology, 2017, Volume 151, Page 101
[4]
Liang Xu, Jie Zheng, Martin Margittai, Ruth Nussinov, and Buyong Ma
ACS Chemical Neuroscience, 2016, Volume 7, Number 5, Page 565
[5]
Goran Šimić, Mirjana Babić Leko, Selina Wray, Charles Harrington, Ivana Delalle, Nataša Jovanov-Milošević, Danira Bažadona, Luc Buée, Rohan de Silva, Giuseppe Di Giovanni, Claude Wischik, and Patrick Hof
Biomolecules, 2016, Volume 6, Number 1, Page 6
[6]
Gabriella Schiera, Carlo Maria Di Liegro, and Italia Di Liegro
BioMed Research International, 2015, Volume 2015, Page 1
[7]
Goran Simic, Mirjana Babic, Fran Borovecki, and Patrick R. Hof
CNS Neuroscience & Therapeutics, 2014, Volume 20, Number 7, Page 692

Comments (0)

Please log in or register to comment.
Log in